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Abstract

This paper studies the design of a Financial Stability Fund under different incentive

provisions. We generalize the flexible moral hazard framework of Georgiadis et al.

(2024), where an agent freely chooses next period’s shock distribution, to a dynamic

recursive contract. Unlike the canonical model of Atkeson and Lucas (1992), this ap-

proach provides incentives based on rewarding the agent’s marginal costs rather than

realized outcomes. The optimal contract features bliss, as opposed to immiseration,

and incentive provision does not disrupt risk-sharing; in fact, risk reduction is optimal.

While neither model nests the other, we make them comparable: restricting distribu-

tions in the flexible model and back-loading incentives in the canonical one. We provide

a quantitative analysis for Euro Area stressed countries, comparing the implications
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1 Introduction

In models of debt and risk-sharing, moral hazard (MH) is a central concern: a risk-

averse borrower can improve its risk profile through effort, but since effort is non-

contractible, lenders have to provide the right incentives for the borrower to make the

right effort. Mechanism design achieves this incorporating incentive compatibility (IC)

constraints in the design of constrained efficient debt-and-insurance contracts. How-

ever, the introduction of IC constraints is not uniform across theoretical frameworks,

leading to different constrained efficient outcomes. Furthermore, while the inclusion

of IC constraints in debt and risk-sharing models is well-understood, how these con-

straints interact with risk-sharing and limited enforcement (LE) constraints is not.

This paper addresses these issues contrasting two existing moral hazard theoretical

frameworks – the well-established canonical MH framework pioneered by Holmstrom

(1979) and in dynamic contracts by Atkeson and Lucas (1992), and the new flexible

MH framework of Georgiadis et al. (2024), which we here extend to dynamic contracts

– in the context of debt and risk-sharing contracts with LE constraints.

These two MH frameworks have a fundamental difference and a fundamental com-

mon property. In the flexible MH framework, the agent (i.e. the borrower in our

economies) chooses a distribution of shocks in a given compact set. In contrast, in the

canonical MH framework the agent chooses an effort to improve a given distribution of

shocks. Both choices have associated costs with the property that higher costs result

in better distributions, in terms of first-order stochastic dominance (FOSD). The same

objective – a desired distribution (or FOSD)– requires different IC constraints: in the

canonical MH, the IC ensures that the marginal cost of exerting effort equates the as-

sociated expected marginal utility gain; while, in the flexible MH, the IC ensures that

the marginal cost of choosing a distribution equates the associated expected marginal

utility gain.1

Associated with the fundamental difference, these two MH frameworks have distinct

provisions of incentives. In particular, the canonical approach applies the general

contracting enforcement principle of ‘the carrot and the stick’. In a principal-agent

relationship, the provision of incentives rewards the agents when the outcome is good

and punishes it otherwise, which in general means that the ex-post value of the contract

1The difference can be illustrated with the multi-armed bandit (MAB) problem: in the canonical MAB

all the arms have the same range of possible prizes and the agent chooses how much effort to exercise in

each one, while in the flexible MAB different arms can have different prizes and the agent chooses (possibly

randomly) which arm (or arms) to play.
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varies accordingly. For instance, the value of the contract decreases for bad outcomes

that may occur due to bad luck rather than a lack of effort. When the contract is a

risk-sharing agreement between a risk-averse agent and a risk-neutral principal, the IC

constraint disrupts the full risk-sharing that could be achieved with observable effort.

The risk distribution improves – in stochastic dominance – with effort but cannot be

reduced, since all distributions have the same support.2

In opposition, the flexible MH approach applies the contracting enforcement princi-

ple of ‘reward the cost beyond the minimum performance’ rather than tying incentives

to realized outcomes, since outcomes per se provide no information when the agent

chooses distributions. In fact, the agent may choose to reduce risk if this is not too

costly. In other words, the enforcement principle of the canonical MH is useless in

the flexible MH, and vice versa, since with a given range of outcomes the minimum

performance (observable outcome) is independent of effort. In sum, the flexible and

the canonical MH are neither substitutes nor a special case of one another.

The principal designs a menu of contracts, each offering specific expected utility to

the agent. Since realized outcomes are uninformative, the contracts are not contingent

on them. The agent chooses among the menu of contracts offered by the principal.

This is incentive compatible as the principal knows the full set of distributions the

agent could implement, and designs the contract so that only the desired distribution

is incentive-compatible. If the agent picks another distribution (say, a cheaper one)

than the one specified in the contract, the Fund’s transfer is such that her expected

utility would be lower.

In a dynamic context the distinction has long-run opposite effects. As shown by

Atkeson and Lucas (1992), in the canonical framework the disruption of the IC con-

straint increases as a submartingale. That is, with an unbounded concave utility the

ex-post value of the agent decays as a supermartingale to immiseration. In contrast,

in the flexible framework, the absence of punishment leads to contracts that avoid the

aforementioned immiseration effect. In particular, we show that, as long as the agent’s

LE constraint is not binding and the agent is not too impatient relative to the princi-

pal, the ex-post value of the agent increases as a submartingale. The contract therefore

features bliss as opposed to immiseration.

Regarding IC constraints, differentiability allows in the canonical case the First-

Order Approach of Rogerson (1985) – extended to our dynamical context in Ábrahám

et al. (2025). In the flexible case, the main assumption is that the cost related to the

choice of a distribution is Gateau differentiable, resulting in a distributional version of

2Otherwise, the principal could elucidate the effort and apply a more severe punishment and reward.
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the First-Order Approach that we extend to dynamic contracts. In sum, the extension

and characterization of the flexible MH approach of Georgiadis et al. (2024) to dynamic

contracts is our first contribution.

We study economies where an impatient and risk-averse sovereign can benefit from

borrowing and insuring risks. Risk has an exogenous and an endogenous component,

only the latter can be reduced with flexible MH, therefore in this framework risk-sharing

is always valuable. We focus on economies where the sovereign borrower has access to

private capital debt markets and to a Fund providing debt and insurance with long-

term state-contingent Fund contracts, based on a risk-assessment of the borrower. The

Fund contract also accounts for two LE constraints: no-default (of the borrower) and

no-expected losses (for the private lenders and Fund), in all periods and states. The

borrower’s default option means to be in default in a Incomplete Market economy with

Defaultable (IMD) debt as the only instrument to smooth consumption upon market

re-entry.

In the IMD economy, there is the same MH framework as in the economy with

the Fund. In particular with flexible MH, the borrower, conditional on an exogenous

state, chooses a distribution equating its marginal cost with its expected marginal

benefit. The risk-averse borrower has no incentive to relocate the probability mass

across different (endogenous) shock levels. Consequently, as we show, in both economies

there is a unique choice of a Dirac distribution. In other words, there is risk reduction

in both economies, although risk-sharing is still valuable since exogenous risk remains.

The differences between the two economies being that in the IMD economy there is no

risk-sharing and the marginal benefit is determined by the (yelfish) borrower’s value

function. In contrast, in the Fund contract, there is risk-sharing and the choice itself

is a IC constraint, where the corresponding borrower’s value function also accounts for

the externality effect that the choice has on the risk-sharing contract and on lendery’

gains.

To bridge the gap between the canonical and the flexible MH. First, we back-load in-

centives in the canonical approach based on the following logic. If the LE constraints are

not binding in the flexible MH, IC constraints never distort risk-sharing. In opposition,

in the canonical MH, IC constraints always distort risk sharing. We therefore consider

long-term canonical MH contracts as a sequence of subprograms. Within subprograms

full-risk sharing is preserved, but when one of the LE constraints binds the subprogram

terminates and a new subprogram starts with the initial condition accounting for the

performance of the previous sub-contract. That is, in the subprogram, IC punishments

and rewards are back-loaded to the start of the following subprogram. Furthermore, the

end of the subprogram is endogenously determined by the binding LE constraints and
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the punishment-reward mechanism must satisfy the borrower’s constraint; that is, it

cannot punish when the no-default constraint is binding. This brings the back-loaded

design closer to the flexible MH design. Interestingly, it also brings it closer to existing

official lending programs, where it is common that the end of a relatively short term

program is followed by another program, with a new risk-assessment (i.e. based on

the previous performance), since official lenders – in particular, in a union of sovereign

countries – have a long-term relationship with the borrowing countries.

Regarding flexible MH, we restrain the choice of distributions. In other words, the

agent is restricted to choose among a specific family of distributions, each with different

costs as before but without the possibility to reduce risk. While in the unrestricted

flexible MH, when risk-reduction is not too costly, the optimal distribution is a Dirac

distribution, it becomes the closest available approximation of a Dirac in the restricted

case. This brings the contract closer to the canonical MH design. Bridging the two

distinct frameworks is our third contribution.

After deriving and characterizing the different Fund contracts, we offer a quantita-

tive exploration using benchmark calibrations – closed to Ábrahám et al. (2025) – for

the Euro Area stressed economies in the euro crisis (Greece, Italy, Portugal and Spain).

Comparing the economies with the Fund: the Restricted Flexible, the Back-Loaded and

the Canonical MHs are fairly close to each other, with this enumeration being the bor-

rower’s ranking, while the Flexible MH Pareto dominates all of them. In particular,

the Fund under flexible MH enables the smoothest consumption path for the borrower.

The quantitative exploration of the different MH frameworks – calibrating them to the

Euro Area stressed countries – is our fourth contribution.

There is a fifth contribution located in our quantitative analysis: the introduction

of flexible MH to model sovereign debt risk is literally counterfactual. We have a

reasonable benchmark calibration with the canonical MH in an economy where part

of the risk is endogenous. However, in this benchmark economy with flexible MH the

borrower sustains a level of debt corresponding to more than three times the level of

GDP without ever defaulting and other statistics are also at odds with the historical

series. In other words, an alternative calibration with flexible MH as a benchmark

does not pass the ‘reasonability test’. Nevertheless, we do not conclude from this that

flexible MH should not be part of the sovereign debt modeling toolbox, since sovereign

debt risk prevention is about choosing (part of) distributions for specific risks (health,

climate, etc.).

The paper is organized as follows. Section 1.1 reviews the literature. Section 2 ex-

poses the environment. Sections 3 and 4 develop the Fund contracts under flexible and
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canonical MH, respectively. Section 5 exposes the back-loaded and restricted flexible

Fund contracts. Section 6 contains the quantitative analysis. Section 7 concludes. The

Appendix contains the proofs and the details on the data used for the calibration.

1.1 Literature Review

The paper derives optimal contracts between a lender and a borrower and therefore

relates to the seminal contributions of Kehoe and Levine (1993, 2001) and Thomas and

Worrall (1994) who considered the case of limited enforcement. The difference with our

approach is that we consider two-sided limited enforcement, while the literature has

focused on one-sided limited enforcement. We solve the optimal contract by means of

the Lagrangian approach of Marcet and Marimon (2019) which has been widely used to

account for limited enforcements (e.g. Kehoe and Perri (2002) and Ferrari et al. (2024))

and its combination with moral hazard (e.g. Simpson-Bell (2020) and Ábrahám et al.

(2025)). In doing so we describe and contrast the dynamic of the relative Pareto weight

under different provisions of incentives.

We develop an optimal contract combining limited enforcement and moral hazard

constraints. Our analysis is close to Atkeson (1991) who – similar to Thomas and

Worrall (1994) – studies lending contracts in international contexts. However, Atkeson

(1991) models moral hazard with respect to consuming or investing the borrowed funds,

while we focus on risk management policies. Quadrini (2004) also combines moral haz-

ard and limited enforcement to study when and how contracts are renegotiation-proof.

Similarly, ? shows that the combination of moral hazard and limited enforcement can

generate a region of ex post inefficiency. This is not the focus of our analysis as our

contract is both ex ante and ex post efficient. In addition, Müller et al. (2019) study

dynamic sovereign lending contracts with moral hazard, with respect to reform policy

efforts, and limited enforcement. Their characterization of the constrained-efficient

allocation is more stylised (normal times are an absorbing state) and focuses on one

form of moral hazard only.

Our research contributes to the literature on moral hazard within dynamic macroe-

conomic models. Building upon the seminal work of Prescott and Townsend (1984),

which demonstrated a constrained efficient allocation can be the allocation of competi-

tive equilibrium if the space of contracts satisfy the corresponding incentive compatibil-

ity constraints, we extend the flexible moral hazard approach introduced by Georgiadis

et al. (2024) to a dynamic framework. We then compare our model’s incentive struc-

tures with those in the canonical dynamic moral hazard model proposed by Atkeson
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and Lucas (1992).

In the canonical model, moral hazard results in immiseration due to an incentive-

compatible mechanism that rewards high types with greater future utility while penal-

izing low types with lesser future utility. This mechanism also impedes risk sharing

because of the reduced future utility for low types. In contrast, our flexible moral

hazard approach leads to what we term “blisy”, the antithesis of immiseration, and

does not disrupt risk sharing, as incentives are not contingent on realized outcomes.

Furthermore, we propose two ways to minimize the disruption to risk sharing in the

canonical model. The first one back-loads incentives to offer spans of consumption

smoothing, while the second limits the flexibility in the borrower’s choice.

Our work more closely contributes to the recent literature on the design of an op-

timal stability Fund. Roch and Uhlig (2018), Liu et al. (2020) and Callegari et al.

(2023) focus on the lender’s side of the contract and therefore disregard moral hazard

issues. In opposition, Dovis and Kirpalani (2023) account for moral hazard and show

that the provision of effort is back-loaded. We build on Ábrahám et al. (2025), where

defaultable sovereign debt is transformed into a safe Fund contract, which accounts for

moral hazard. They assume that the Fund has an exclusivity contract unlike Liu et al.

(2020) and Callegari et al. (2023) who model a Fund which absorbs a minimal amount

of debt. We exploit the fact that incentive compatibility constraints are disruptions to

perfect risk-sharing. Our contribution is twofold. First, we provide a more comprehen-

sive analysis of moral hazard in the Fund design, describing and contrasting different

provisions of incentives and their interactions with limited enforcement constraints.

Second, we offer a quantitative exploration using a benchmark calibration for the Euro

Area stressed countries.

2 Environment

We introduce flexible moral hazard (MH) in the environment studied in Ábrahám et al.

(2025). Consider an infinite-horizon small open economy with a single homogenous

consumption good in discrete time. A benevolent government acts as a representative

agent and takes decisions on behalf of the small open economy.

In each period, the government receives a stochastic endowment y ∈ Y = [y, y]

which is drawn from a probability distribution π. The government is able to generate

any distribution over Y . We denote by M the set of Borel probability measures on Y

and by δy′ the Dirac measure generating y′ with probability one. Note already that we
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extend the analysis to a production economy with endogenous labor in Section 6.

The government discounts the future at the rate β, satisfying β ≤ 1/(1 + r), where

r is the risk-free world interest rate. The fact that the government is less patient than

the lenders implies that it would like to front-load consumption. The government’s

utility can be defined by U : R+ × M → R and is additively separable. So, if the

government chooses a distribution π and consumes c then its instantaneous payoff is

U(c, π) ≡ u(c)− v(π). We make standard assumptions on preferences of consumption.

For the distribution choice, we assume that the cost of effort is continuous, strictly

convex, Gateaux thrice differentiable and monotone in first-order stochastic dominance.

We also normalize the first Gateaux derivative to be zero at y.3

Assumption 1 (Monotonicity, Differentiability and Convexity). The utility functions

from consumption, u : R+ → R, is continuous, strictly increasing and strictly concave.

The utility function from effort, v : M → R, is continuous, strictly convex, Gateaux

thrice differentiable where vπ : K → R+, wπ : K2 → R+ and zπ : K3 → R+ denote the

first, second and third Gateaux derivative, respectively. Moreover, if the distribution π

first-order stochastically dominates π̃ then v(π) ≥ v(π̃). Finally, vπ(y) = 0.

Formally, a Gateaux derivative is defined as follows. The cost function v is Gateaux

differentiable at π ∈ M if there exists a continuous function vπ such that for all π′ ∈ M,

lim
ϵ↓0

v(π + ϵ(π′ − π))− v(π)

ϵ
=

∫
vπ(y)(π

′ − π)(dy). (1)

To define the second and third derivatives it suffices to replace v(π+ ϵ(π′ − π)) on the

left-hand side with vπ+ϵ(π′−π)(·) and wπ+ϵ(π′−π)(·), respectively, and to replace vπ(y)

on the right-hand side with wπ(·, y) and zπ(·, ·, y), respectively.

To illustrate the shape of such derivatives, we give an example of the cost function

that we later use in the quantitative section. Let L : R → R be an increasing, strictly

convex and differentiable function and v(π) = L[
∫
(y−y)π(dy)]. The Gateau derivatives

are then given by vπ(y) = L′[
∫
(y − y)π(dy)](y − y), wπ(i, y) = L′′[

∫
(y − y)π(dy)](i −

y)(y − y) and zπ(j, i, y) = L′′′[
∫
(y − y)π(dy)](i− y)(j − y)(y − y).

3 The Fund under Flexible Moral Hazard

The Fund contract establishes a long-term relationship between the borrower and the

Fund by defining a state-contingent sequence of consumption and shock distribution

3This is without loss of generality. If vπ is a derivative of v, then vπ +k for k ∈ R is also a derivative of v.
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that maximises the life-time utility of both contracting parties given some initial con-

ditions. It seeks to provide risk-sharing between the borrower and the Fund to the

extent possible. However, LE and MH frictions preclude perfect risk-sharing.

The optimal contract is self-enforcing through the presence of two LE constraints.

First, we assume that if the borrower ever defaults on the Fund contract, it will not

be able to sign a new contract with the Fund and will enter autarky permanently.

The Fund contract, however, makes sure that the borrower never finds it optimal to

renege the contract. Second, the contract also prevents the Fund from ever incurring

undesired expected losses, i.e. undesired permanent transfers.

In addition, the contract also has an incentive compatibility constraint, since the

distribution π is non-contractible (i.e. it is private information, or a sovereign right of

the borrower). Thus, the long term contract must provide sufficient incentives for the

borrower to implement a constrained efficient distribution.

3.1 The Constraints

Given the LE and MH frictions, the Fund has to account for three different constraints.

The first one is the LE constraint of the borrower. For any yt, t ≥ 0, it should be that

Et

[ ∞∑
j=t

βj−tU(c(yj), πj+1)

]
≥ V D(yt). (2)

The notation is implicit about the fact that expectations are conditional on the imple-

mented distributions of {yj}∞j=t. The borrower’s outside option is given by

V D(yt) =max
πt+1

{
U(yt − ϕ(yt), πt+1) + β

∫
V D(yt+1)πt+1(dy

t+1)
}
,

where ϕ : Y → R+ is a default penalty with ϕ′(·) ∈ [0, 1]. The second constraint is the

LE constraint of the Fund. For any yt, t ≥ 0, it should hold that

Et

[ ∞∑
j=t

(
1

1 + r

)j−t (
yj − c(yj)

) ]
≥ Z(yt). (3)

The finite outside option of the Fund Z(yt) ≤ 0 measures the extent of ex-post redistri-

bution the Fund is willing to tolerate. That is, if Z(yt) < 0 the Fund is allowed to make

a permanent loss in terms of lifetime expected net present value – i.e. the Fund can

find better investment opportunities in the international financial market and if it does

not renege it is because it has committed to sustaining Z(yt) < 0. Clearly, the level of

Z(yt) has an important impact on the amount of risk sharing in our environment and
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it can thus be interpreted as the extent of solidarity the Fund is willing to accept in

state yt, as in Tirole (2015).

Finally, the last constraint is the incentive compatibility (IC) constraint. Define

V b(yt) = Et[
∑∞

j=0 β
jU(c(yt+j), πt+j+1)] as the value of the borrower at time t. For

any yt, t ≥ 0 and a given consumption schedules {c(yt)}∞t=0, the optimal vector of

distributions from the borrower’s perspective is

πt+1 = argmax
π̃

{
−v(π̃) + β

∫
V b(yt+1)π̃(dyt+1)

}
= argmax

π̃

{∫ [
βV b(yt+1)− vπt+1(y

t+1)
]
π̃(dyt+1)

}
,

where the second equality comes from the Gateau differentiability of the cost function

v(·) in Assumption 1. In particular, carefully observe the difference between the optimal

distribution πt+1 and the operand π̃ within the integrals. We can then re-scale the

maximization problem by stating the gain and cost of effort in relative terms to the

no-effort option,

πt+1 =argmax
π̃

{∫ [
β
(
V b(yt+1)− V b(y)

)
−
(
vπt+1(y

t+1)− vπt+1(y)
) ]
π̃(dyt+1)

}
.

This rescaling is possible as βV b(y) − vπt+1(y) is a constant. Since vπt+1(y) = 0 by

Assumption 1, the IC constraint is for any yt+1, t ≥ 0,

vπt+1(y
t+1) = β

(
V b(yt+1)− V b(y)

)
. (4)

Here, vπt+1(y
t+1) is the Gateaux derivative of the borrower’s cost evaluated at the

distribution πt+1 in the direction of placing more probability mass on the realization

yt+1. Using the Dirac measure δyt+1 , this direction is represented by the difference

δyt+1 − πt+1, which captures a shift in probability mass away from the current distri-

bution and toward the specific outcome yt+1. Setting π = πt+1 and π′ = δyt+1 in (1),

one gets that

vπt+1(y
t+1) = lim

ϵ↓0

v(πt+1 + ϵ(δyt+1 − πt+1))− v(πt+1)

ϵ
+

∫
vπt+1(y

t+1)πt+1(dy
t+1).

In words, this derivative measures the marginal cost of relocating an infinitesimal

amount of probability mass from the current distribution πt+1 toward the realization

yt+1.4 Intuitively, it captures how costly it is for the borrower to distort the distribution

slightly in favor of yt+1.

4This means that global perturbations of the measure (such as π′
t+1 − πt+1) can be viewed as weighted

combinations of local deviations that shift probability mass toward specific realizations (represented by Dirac

measures). In that logic vπt+1
serves as an influence function: its integral against a perturbation direction

quantifies the resulting change in cost.
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In the context of equation (4), the IC constraint guarantees that the borrower has

no incentive to deviate from the distribution πt+1 by reallocating probability mass.

That is, the marginal cost of increasing the likelihood of any particular endowment

realization must equal the marginal gain in continuation value, relative to the baseline

endowment y.

Importantly, in this setup, the borrower directly selects a distribution over outcomes,

not merely an action that stochastically determines outcomes. This implies that the

borrower can arbitrarily distort the relative likelihood of any subset of endowment

realizations. Since these realizations are fully manipulable, they carry no informational

content. As a result, the provision of incentives cannot rely on realized endowments.

Instead, incentives must be provided entirely through compensating the marginal cost

of assigning probability mass to each outcome in the support Y , as captured by the

Gateaux derivative.

Since we defined vπt+1(y
t+1) by means of the perturbed measure πϵ = (1− ϵ)πt+1 +

ϵδyt+1 , equation (4) relies on local perturbations of the target distribution πt+1. Hence,

for the IC constraint to be valid, the borrower needs not have full flexibility in the

choice of distributions (nor monotonicity in first-order stochastic dominance). A local

flexibility in the sense that the borrower can generate small perturbations of πt+1 in

arbitrary directions is enough. We define such capacity as follows

Definition 1 (Local Flexibility). We say that the borrower enjoys local flexibility,

when the target distribution π̈ ∈ N ⊂ M is such that for every π ∈ M, there is some

ϵ > 0 for which π̈ + ϵ(π − π̈) ∈ N is feasible.

In Section 5, we restrict the borrower’s choice of distributions in such a way that

Definition 1 does not hold anymore. In that case, endowment realizations become

informative and condition the provision of incentives.

By defining the IC constraint in this way, we use the first-order approach. That is

we replace the agent’s full optimization problem with respect to π̃ by its necessary and

sufficient first-order condition.5 This method relies on the Gateaux differentiability

of the borrower’s objective, as in Georgiadis et al. (2024), and generalizes the classic

approach of Rogerson (1985), which assumes a lower-dimensional incentive problem.

5Convexity of v is not needed for necessity, only for sufficiency.
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3.2 The Long Term Contract

In its extensive form, the Fund contract specifies that in state yt = (y0, . . . , yt), the

borrower consumes c(yt) and chooses the distribution πt+1, resulting in a transfer to

the Fund of yt − c(yt). With two-sided LE and MH constraints, an optimal Fund

contract is a solution to the following Fund problem

max
{c(yt),πt+1}

E0

[
αb,0

∞∑
t=0

βtU(c(yt), πt+1) + αl,0

∞∑
t=0

(
1

1 + r

)t [
yt − c(yt)

] ]
s.t. (2), (3), and (4), ∀yt, t ≥ 0.

Note that (αb,0, αl,0) are the initial Pareto weights, which are key for our interpretation

of the Fund contract as a risk-sharing contract. Given (2), (3) and (4), we take the

following interiority assumption to ensure the uniform boundedness of the Lagrange

multipliers.

Assumption 2 (Interiority). There is an ϵ > 0, such that, for all y0 ∈ S there is a

contract {c̃(yt), π̃t}∞t=0 satisfying constraints (2) and (3) when, on the right-hand side,

V D(yt) and Z(yt) are replaced by V D(yt)+ ϵ and Z(yt)+ ϵ, respectively, and similarly,

when in (4) vπt+1(y
t+1) is replaced by vπt+1(y

t+1) + ϵ and = is replaced by ≤.

For constraints (2) and (3), this assumption requires that, in spite of the LE con-

straints, there are strictly positive rents to be shared since otherwise there may not

be a constrained-efficient risk-sharing contract. The last part of this assumption is

satisfied if a distribution exists that generate a marginal benefit above the marginal

cost.6

Following Marcet and Marimon (2019) and Mele (2011), we can rewrite the Fund

6The first part of the assumption can easily be satisfied since there are gains from risk-sharing in a

contract between a risk-averse borrower and a risk-neutral Fund as long as there is a sufficiently high penalty

for default ϕ(·). The second part of the assumption is also easily met under various cost functions v(π) if

full risk sharing is not the only feasible allocation.
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contract problem as a saddle-point Lagrangian problem:

SP min
{γb(yt),γl(yt),ξ(yt+1)}

max
{c(yt),πt+1}

{
E0

[ ∞∑
t=0

βt
(
αb,t(y

t)U
(
c(yt), πt+1)

− ξ(yt+1)
(
βV b(y) + vπt+1(y

t+1)
)
+ γb(y

t)
[
U(c(yt), πt+1)− V D(yt)

])
+

∞∑
t=0

(
1

1 + r

)t(
αl,t+1(y

t)[yt − c(yt)]− γl(y
t)
[
yt − c(yt)− Z(yt)

])]}
s.t. αb,t+1(y

t+1) = αb,t(y
t) + γb(y

t) + ξ(yt+1),

αl,t+1(y
t) = αl,t(y

t) + γl(y
t),

αb,0(y
0) ≡ αb,0, αl,0(y

0) ≡ αl,0 given,

where γb(y
t), γl(y

t) and ξ(yt+1) are the Lagrange multipliers of the LE constraints in

(2) and in (3), and the IC constraint in (4), respectively, in state yt+1.

The above formulation of the problem defines two new co-state variables αb(y
t) and

αl(y
t), which represent the temporary Pareto weights of the borrower and the Fund re-

spectively. These variables are initialized at the original Pareto weights (αb,0, αl,0) and

become time-variant because of the LE and MH frictions. In particular, a binding LE

constraint of the borrower (Fund) will imply a higher co-state variable of the borrower

(Fund) so that it does not leave the contract. In addition, the MH friction implies that

the borrower’s co-state variable will increase as ξ(yt+1) ≥ 0 under Assumption 2.

Given the homogeneity of degree one of the maximization problem in (αb,t, αl,t), only

relative Pareto weights, defined as xt(y
t) ≡ αl,t(y

t)/αb,t(y
t), matter for the allocations,

and this allows us to reduce the dimensionality of the co-state vector and write the

problem recursively by using a convenient normalization. Let η ≡ β(1 + r) ≤ 1 and

normalize the multipliers as follows

νb(y
t) =

γb(y
t)

αb,t(yt)
, νl(y

t) =
γl(y

t)

αl,t(yt)
and ϱ(yt+1) =

ξ(yt+1)

αb,t(yt)
.

The Saddle-Point Functional Equation (SPFE) — i.e. the saddle-point version of

Bellman’s equation — is given by

FV (y, x) = SP min
{νb,νl,ϱ}

max
{c,π̃}

{
x
[
(1 + νb)U(c, π̃)− νbV

D(y)
]

(5)

+
[
(1 + νl)[y − c]− νlZ(y)

]
+

∫ [
1 + νl
1 + r

FV (y′, x′(y′))− xϱ(y′)
(
vπ̃(y

′) + V b(y, x′(y))
)]
π̃(dy′)

}
s.t. x′(y′) ≡ x′(y) + x̂′(y′) =

[
1 + νb
1 + νl

+
ϱ(y′)

1 + νl

]
ηx, (6)
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Equation (23) gives the law of motion of the relative Pareto weight in recursive form.

The prospective weight x′(y′) can be separated into two parts: the update due to

the borrower’s LE constraint x′(y) and the update due to the IC constraint x̂′(y′).

Furthermore, the Fund’s value functions can be decomposed as follows

FV (y, x) = xV b(y, x) + V l(y, x) with (7)

V l(y, x) = y − c+
1

1 + r

∫
V l(y′, x′(y′))π(dy′), (8)

V b(y, x) = U(c, π) + β

∫
V b(y′, x′(y′))π(dy′). (9)

The policy functions for consumption and labor of the Fund contract must solve the

first-order conditions of the SPFE. In particular, c(y, x) satisfies

u′(c(y, x)) =
1 + νl(y, x)

1 + νb(y, x)

1

x
(10)

This conditions is standard as the borrower’s consumption is determined by its endoge-

nous relative Pareto weight.

Regarding the optimal distribution, define F̃ V (y′, x′(y′)) ≡ x′(y′)
[
V b(y′, x′(y′))− V b(y, x′(y))

]
+[

V l(y′, x′(y′))− V l(y, x′(y))
]
which corresponds to FV (y′, x′(y′)) except for the addi-

tion of V l(y, x′(y)). Since this additional term is constant given {νb, νl, ϱ(y′)} and {c},
π̃ maximizes the Fund’s objective function if it maximizes∫ [

1 + νl
1 + r

F̃V (y′, x′(y′))− x(1 + νb)vπ(y
′)− xϱ(y′)vπ̃(y

′)

]
π̃(dy′).

As a result, the optimal distribution from the Fund’s perspective solves

Λπ(y
′) ≡x

(
1 + νb + ϱ(y′)

) [
β
(
V b(y′, x′(y′))− V b(y, x′(y))

)
− vπ(y′)(y

′)
]

+
1 + νl
1 + r

[
V l(y′, x′(y′))− V l(y, x′(y))

]
− xϱ(y′)

∫
wπ(i, y

′)π(di) = 0.

The first line of the expression is simply (4) meaning that the Fund contract has

to compensate the borrower for choosing a certain level of effort. The second line

of the expression accounts for the effect on the Fund itself plus the marginal relax-

ation/tightening effect when there is a change in the probability of shock y′.7 As (4)

holds, the optimal distribution is such that

1

1 + r

[
V l(y′, x′(y′))− V l(y, x′(y))

]
= x

ϱ(y′)

1 + νl

∫
wπ(i, y

′)π(di). (11)

For completeness of the argument, we provide a definition of the Fund contract and

subsequently show existence and uniqueness extending the proof of Marcet and Mari-

mon (2019) and Ábrahám et al. (2025) to our environment.

7More precisely, the second Gateau derivative of v(·), wπ(i, y
′), represents the change in the marginal

cost of generating the shock i associated with a slight increase in the probability of y′.
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Definition 2 (Fund Contract). Given an initial relative Pareto weights x0(y0) and

outside options {V D(y), Z(y)}, the policies for the allocations {c(y, x), π(y, x)}, multi-

pliers {νb(y, x), νl(y, x), ϱ(y, x, y′)}, value functions {V b(y, x), V l(y, x)}, relative Pareto
weight {x′(y, x, y′)} are a recursive constrained-efficient Fund contract if they satisfy

conditions (23)-(11) for all (y, x).

Proposition 1 (Existence and Uniqueness). Given Assumptions 1 and 2, for any

y0, x(y0), and outside options {V D(y), Z(y)}, there is a unique recursive constrained-

efficient Fund contract.

Following Ábrahám et al. (2025), we use the term recursive constrained-efficient

Fund contract because it is optimal, given the constraints imposed on it, and it has a

recursive structure. In the rest of the paper we simply refer to the Fund contract. This

contract serves as the policy instrument of the Fund. In its design, it considers the

constraints of the borrower and the Fund and determines the appropriate policies on

labor and consumption. Regarding the distribution decision, the Fund functions as a

Principal in a Principal-Agent framework, taking the borrower’s first-order condition

as a given. We next characterize the optimal distribution and how this interacts with

the LE constraint.

3.3 Moral Hazard and Limited Enforcement

We first characterize the optimal distribution before establishing the long run properties

of the contract. Following Georgiadis et al. (2024), we can re-formulate (11) using

the same approach as we did to derive the IC constraint. In particular, the optimal

distribution from the Fund’s perspective solves

π = argmax
π̃

∫
Λπ(y

′)π̃(dy′).

Observe again the distinction between the optimal distribution π and the operand π̃.

Given this, maximizing
∫
Λπ(y

′)π̃(dy′) over all probability distributions is equivalent

to concentrating the probability mass on the set of maximizers of Λπ(y
′). That is, the

expectation is maximized when π̃ assigns all mass to the y′ ∈ Y that maximize Λπ(y
′).

Therefore

supp π ⊆ argmax
y′∈Y

Λπ(y
′).

This means that whenever Λπ(y
′) is strictly concave, there is only one y′ that maximizes

Λπ(y
′). The problem of choosing an optimal distribution is therefore the same as the

one of choosing y′ directly.8 The following proposition formalizes this argument.

8We work under strict concavity. However, it is enough to have strict quasiconcavity.
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Proposition 2 (Optimal Distribution). If wπ(·, y′) is strictly convex in y′ for every π,

then Λπ(y
′) is strictly concave for every π and the optimal distribution has at most one

y′ in its support. Given the Dirac measure δy′, the Fund’s problem therefore reduces to

FV (y, x) = SP min
{νb,νl,ϱ(y′)}

max
{c,y′}

{
x
[
(1 + νb)U(c, δy′)− νbV

D(y)
]
+
[
(1 + νl)[y − c]− νlZ(y)

]
+

1 + νl
1 + r

FV (y′, x′(y′))− xϱ(y′)
(
vδy′ (y

′) + V b(y, x′(y))
)}

.

The proposition is made of two parts. First, the strict convexity of the second

Gateau derivative of v(π) implies that Λπ is strictly concave since the Fund’s value

is concave in y. Second, when Λπ is strictly concave, the optimal distribution choice

collapses to a Dirac distribution. More generally, this means that the borrower’s flexi-

bility in the choice of distribution enables a complete reduction of risk. In other words,

the borrower not only can but also find it optimal to eliminate any stochasticity in y′.

In Section 6, we introduce an exogenous shock preventing complete risk reduction.

The following lemma provides a characterization of the interaction between LE and

MH constraints.

Lemma 1. When y′ = y, then ϱπ(y
′) = 0. Otherwise, ϱπ(y

′) > 0.

The lemma states that when the borrower chooses the lowest possible y′, the mul-

tiplier attached to the IC constraint is zero. Otherwise, it is strictly positive. The

rationale behind this result is the following. The borrower incurs zero cost when

choosing y. However, for any y′ > y, the cost is positive and the borrower needs to be

compensated accordingly. Hence, when y′ = y, the borrower only gets the basis value

V b(y) meaning that ϱπ(y
′) = 0. For any other realization, ϱπ(y

′) > 0 to compensate

the borrower for incurring more costs.

A direct corollary is that the law of motion of the relative Pareto weight is a left

bounded positive submartingale. To see this, take the expectations of the law of motion

Ex′(y′) ≡ Et

[
x̄′(y) + x̂′(y′)

]
= E

[
1 + νb(y)

1 + νl(y)
x(y) +

ϱ(y′)

1 + νl(y)
x(y)

]
η,

where x̂′(y′) accounts for the dynamic effect of the MH constraint. There are two forces

working against the multiplier on the IC constraint ϱ(y′): impatience η ≤ 1 and the

Fund’s LE constraint νl(y) ≥ 0. Hence, with neither the Fund’s LE constraint nor

impatience, we get that Ex′(y′) ≥ x(y). This means that without either one of these

two elements, the relative Pareto weight would go towards infinity. This is the reverse

of the immiseration result of Atkeson and Lucas (1992). We call it bliss.
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Corollary 1 (Bliss). When η = 1 and νl(y) = 0 in all states, Ex′(y′) ≥ x(y).9

This result is important as it uncovers a different provision of incentives than the

canonical MH. The Fund does not rely on the realization of y′ to provide incentives

but compensates the borrower for the cost it incurred. Such mechanism is more risk

sharing friendly as there is no punishment for low realization of y′. In the next section

we analyze such problem and contrast it with the outcome of Lemma 1.

4 The Fund under Canonical Moral Hazard

We switch to the canonical MH. So far, the borrower could choose any distribution

π directly with increasing cost in first-order stochastic dominance. In what follows,

it losses its capacity to manipulate in an arbitrary way the relative likelihood of any

collection of y′. More precisely, the borrower chooses effort e, which translates into

first-order stochastic dominance over given distributions. Effort is not contractible and

affects the distribution globally – as opposed to locally. As one will see, the canonical

and the flexible MH have distinct provisions of incentives and neither of them is a

special case of the other.

4.1 The Constraints

The borrower’s choice of distribution is restricted to a subset of Q ⊂ M. In particular,

define Q as a mixture distribution Q = ϖ(e)QL + (1−ϖ(e))QH for QL, QH ∈ Q with

a weighting function ϖ : [0, 1] → [0, 1]. The borrower can manipulate the weights

by choosing the (non-contractible) effort e ∈ [0, 1] to change Q. We assume that QH

first-order stochastically dominates QL and that ϖ(e) is continuous, strictly decreasing

and concave. As it is clear from Definition 1, the borrower does not anymore enjoy

local flexibility. This is because any change in e has global effects on the distribution.

To recover the formulation of the canonical MH problem, we consider a different

effort cost than what we had so far. The cost of effort v̂ : [0, 1] → R is a mapping from

[0, 1] instead of M. We then have that Û(c, e) = u(c)− v̂(e).

Notice that the structure of the cost function v̂(e) prevents us to use the argument

based on the Gateau differentiability. In the next section we analyze the case of a

restricted choice of distributions with the previously adopted cost function v(π).

9Note that a sufficient condition for νl(y) = 0 is that Z(y) is negative enough for all y.
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Given the re-definition of the instantaneous utility function – which is now defined

over e instead of π, the LE constraint of the borrower reads

Et

[ ∞∑
j=t

βj−tÛ(c(yj), e(yj))

]
≥ V̂ D(yt), (12)

where the outside option is given by

V̂ D(yt) = max
e

{
Û(yt − ϕ(yt), e) + β

∫
V̂ D(yt+1)Q(yt+1|yt, e)(dyt+1)

}
.

The LE constraint of the Fund is unchanged compared to (3). We nevertheless repeat

it below. For any yt, t ≥ 0, it should hold that

Et

[ ∞∑
j=t

(
1

1 + r

)j−t (
yj − c(yj)

) ]
≥ Z(yt). (13)

The main change relates to the IC constraint. Instead of choosing an entire distribution,

the borrower picks an effort level. Define V̂ b(yt) = Et[
∑∞

j=0 β
jÛ(c(yt+j), e(yt+j))] as

the value of the borrower at time t. The optimal choice of effort is given by

e(yt) = argmax
ẽ

{
Û(c(yt), ẽ) + β

∫
V̂ b(yt+1)Q(yt+1|yt, ẽ)(dyt+1)

}
.

The IC constraint is therefore

v̂e(e(y
t)) = β

∫
V̂ b(yt+1)∂eQ(yt+1|yt, e(yt))(dyt+1). (14)

For the first-order approach of Rogerson (1985) to be valid, the cumulative distribution

function of y′ should be differentiable, convex and satisfy the monotone likelihood-ratio

condition. This mirrors our Assumption 1. However, the similarity with the flexible

MH stops here. The IC constraint in (14) relies on the informativeness of the realization

of y′. This is because the information content of a specific realization can be directly

measured by the relative likelihood given that Q is contractible, whereas e is not. In

the case of flexible MH, the probability distribution is a choice variable which is not

contractible. This precludes any informativeness of the shock realization.

Assumption 3 (Differentiability, Monotonicity and Convexity). The utility function

from effort, v̂ : [0, 1] → R, is continuous, convex and twice differentiable. For every y,

if e ≥ ẽ > 0 the ratio Q(y′|y,ẽ)
Q(y′|y,e) is nonincreasing in y′, and, for every (e, y), Qp(e, y) =∫

p⊆Y Q(y′|y, e)(dy′) is differentiable in e, with ∂eQp(e, y) ≤ 0 and ∂2eQp(e, y) ≥ 0.

Assumption 3 generalizes the assumptions of Rogerson (1985) so that we can apply

his first-order condition approach in a simple static Pareto-optimization problem to

our dynamic contracting problem with LE and MH frictions.
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4.2 The Long Term Contract

With two-sided LE and MH constraints, the optimal Fund contract is a solution to the

following maximization problem

max
{c(yt),e(yt)}

E0

[
αb,0

∞∑
t=0

βtÛ(c(yt), e(yt)) + αl,0

∞∑
t=0

(
1

1 + r

)t [
yt − c(yt)

] ]
s.t. (12), (13) and (14), ∀yt, t ≥ 0.

In terms of structure, the Fund problem is very similar to what we had under flexible

MH. The main change is that the government exercises effort e(yt) instead of directly

choosing a distribution πt+1. As before, to ensure the uniform boundedness of the

Lagrange multipliers, we posit an interiority assumption.

Assumption 4 (Interiority). There is an ϵ > 0, such that, for all y0 ∈ Y there is a

program {c̃(yt), ẽ(yt)}∞t=0 satisfying constraints (12) and (13) when, on the right-hand

side, V̂ D(yt) and Z(yt) are replaced by V̂ D(yt) + ϵ and Z(yt) + ϵ, respectively, and

similarly, when in (14) v̂e(e(y
t)) is replaced by v̂e(e(y

t)) + ϵ and = is replaced by ≤.

The interiority of effort can be guaranteed if full risk sharing is not the only fea-

sible allocation and appropriate conditions are imposed on the cost v̂(e) and benefit

Q(y′|y, e) of effort. Following the previous section, we can formulate the Fund problem

in recursive form. We find that the SPFE is given by

F̂ V (y, x) = SP min
{νb,νl,ϱ}

max
{c,e}

{
x
[
(1 + νb)Û(c, e)− νbV̂

D(y)− ϱv̂e(e)
]

(15)

+
[
(1 + νl)(y − c)− νlZ(y)

]
+

1 + νl
1 + r

∫
F̂ V (y′, x′(y′))Q(y′|y, e)(dy′)

}
s.t. x′(y′) ≡ x̄′(y) + x̂′(y′) =

[
1 + νb
1 + νl

+
φ(y′|y)
1 + νl

]
ηx, (16)

φ(y′|y) = ϱ
∂eQ(y′|y, e)
Q(y′|y, e)

.

The Fund’s value functions can be decomposed as in the case with flexible MH. Sim-

ilarly, the policy functions for consumption is the solution to (10). This is because of

additive separability in the utility function. Hence, the formulation of the MH does

not directly affect the formulation of this first-order condition.

Notice that the multiplier φ(y′|y) is defined as ϱ∂eQ(y′|y,e)
Q(y′|y,e) . It does not explicitly

depend on e since, as multiplier, the action is taken as given. Moreover, it can be

positive or negative depending on the sign of ∂eQ(y′|y, e). This reflects the main

difference with the flexible MH approach we discussed previously. As the choice of
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distribution is restricted, the relative likelihood is informative about the realization of

y′. In particular, the Fund acting as the principal will punish the borrower acting as

the agent when a bad outcome realizes (i.e. ∂eQ(y′|y, e) < 0) and will reward when a

good outcome realizes (i.e. ∂eQ(y′|y, e) > 0). Note that bad outcomes may occur here

due to bad luck rather than a lack of effort.

The effort policy e(y, x) is determined by the first order condition of the SPFE with

respect to e, which can be conveniently expressed as:

v̂′(e(y, x)) = β

∫
∂eQ(y′|y, e)V̂ b(y′, x′(y′))(dy′) (17)

+
1 + νl(y, x)

1 + νb(y, x)

1

x

1

1 + r

∫
∂eQ(y′|y, e)V̂ l(y′, x′(y′))(dy′)

− ϱ(y, x)

1 + νb(y, x)

[
v′′(e(y, x))− β

∫
∂2eQ(y′|y, e)V̂ b(x′(y′), y′)(dy′)

]
.

Equation (17) balances the marginal cost of effort with the benefits. The first line is the

life-time utility benefit of effort to the borrower; the second line is the marginal benefit

of effort to the Fund; the third line accounts for the marginal relaxation/tightening

effect of the MH constraint (14) when there is a change in effort. With contractible

effort, the Fund problem would not have the IC constraint (14) and the effort decision

would be given by the first two lines, with the second one accounting for the social

value of effort. In contrast, with non-contractible effort, as we assume, constraint (14)

is present and the first line is equal to zero. In this case, (17) reduces to

1

1 + r

∫
∂eQ(y′|y, e)V̂ l(y′, x′(y′))(dy′) (18)

= ϑ(y, x)

[
v′′(e(y, x))− β

∫
∂2eQ(y′|y, e)V̂ b(y′, x′(y′))(dy′)

]
,

where ϑ(y, x) ≡ xϱ(y,x)
1+νl(y,x)

can be interpreted as the marginal value of relaxing the IC

constraint in terms of the Fund’s valuation; that is, (18) accounts for the external

effect of effort on the Fund’s value through its effect on the IC constraint. Note that,

although the IC constraint implies that only the borrower’s returns affect the effort

decision directly, the benefits represented in (18) will affect incentives as they affect ϱ

and hence the whole future path of allocations through (16).

The definition of the Fund contract can be easily adapted from Definition 2. The in-

terested reader can refer to Ábrahám et al. (2025) who also provide a proof of existence

and uniqueness that we do not repeat here.
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4.3 Limited Enforcement and Moral Hazard

In the economies we study, with the need of risk-sharing, avoiding default or undesired

permanent transfers, MH problems arise when these problems could be alleviated with

effort, but such effort is not contractible. Therefore it is reasonable to model contracts

with LE constraints that satisfy the following property:

Definition 3. The LE constraints (12) and (13) satisfy the ‘no-free-lunch condition’

if, given (y, x), whenever νb(y
′, x′(y, x, y′)) > 0, then ∂eQ(y′|y, e) > 0 and whenever

νl(y
′, x′(y, x, y′)) > 0, then ∂eQ(y′|y, e) < 0, respectively.

Conversely, if ∂eQ(y′|y, e) = 0 (or the inequality signs were reversed) exercising

more effort would not have any effect on the LE constraints (or a perverse effect)

and, on those grounds, MH would not be an issue. The following lemma provides a

characterization of the interaction between LE and MH constraints.

Lemma 2. Under Assumption 3, in the Fund contract:

1. LE constraints have an effect on the expected law of motion of the Pareto weights,

when they are binding; in contrast, MH constraints do not have an effect on {Ex′},
even if they bind; i.e. Ex′ = x̄′(y).

2. If LE constraints satisfy the ‘no-free-lunch condition’, MH constraint make the

borrower’s LE constraint (12) more likely to bind and the Fund’s LE constraint

(3) less likely to bind and, in both cases, Et
1

u′(c′) increases.

To see the first point, note that, given (16),∫
Q(y′|y, e(y))x̂′(y′)(dy′) = 0,

since independently of effort we have
∫
Q(y′|y, e(y))(dy′) = 1 implying that

∫
∂eQ(y′|y, e(y))(dy′) =

0. Therefore Ex̂′ = 0 and Ex′ = x̄′(y). Alternatively, the expected law of motion of x

can also be expressed as

Ex′ = E

[
1

u′(c′)

1 + ν ′l(y
′)

1 + ν ′b(y
′)

]
=

1

u′(c)
η,

where the last equality is the inverse Euler equation of the recursive contract (Ábrahám

et al. (2025), Lemma 4).

To see the second point, note that, since the LE constraint multipliers are either

zero or at most one of the two is positive, we have that

Et
1

u′(c′)
= Et

[
x′
1 + ν ′b(y

′)

1 + ν ′l(y
′)

]
.
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If LE constraints satisfy the ‘no-free-lunch condition’, the borrower’s LE constraint

is more likely to bind, while the Fund’s LE constraint is less likely to bind and, as a

result, in both cases expected consumption increases.

5 Flexible vs. Canonical Moral Hazard

In this section, we contrast the two MH formulations. We first back load the incentives

in the canonical MH by splitting the Fund contract into a sequence of subcontracts.

We subsequently restrict the choice of distributions in the flexible MH framework.

5.1 Back-loaded moral hazard

In the canonical MH problem, the provision of incentives is generated by a system

of rewards and punishments associated with the moral-hazard constraint (14). Such

system is not unique. We analyze a Fund contract which consists of an infinite sequence

of subprograms, whereby within each subprogram rewards and punishment are back-

loaded to the end.

The length of each subprogram is directly determined by the binding LE constraints.

The reason is that whenever a subprogram would violate one of the LE constraints,

one of the contracting parties would find it optimal to terminate the contract. Hence,

the binding LE constraints endogenously determine the subprogram’s end. When this

happens, we say that the subprogram resets.

The Fund contract can be expressed as the solution to a sequence of sub-contracts.

As a subprogram resets when one of the LE constraint binds, the start of a subprogram

is such that

F̂ V (y, x) = min
{νb,νl,ϱ}

max
{c,e}

{
x
[
(1 + νb)(u(c)− v̂(e))− νbV̂

D(y)− ϱv′(e)
]

+ [(1 + νl)(y − c)− νlZ(y)]

+
1 + νl
1 + r

E

[
I{(y′,x′(y′))}F̂ V (y′, x′(y′)) + (1− I{(y′,x′(y′))})FV (y′, x′(y′), x̄′) | y, e

]}
s.t. x′(y′) = ηx

1 + νb + φ(y′|y)
1 + νl

,

x̄′ = ηx
1 + νb
1 + νl

,

where φ(y′|y) = ϱ∂eQ(y′|y,e)
Q(y′|y,e) as in Section 4 and I{(y′,x′(y′))} is an indicator function

where I{(y′,x′(y′))} = 1 if one of the LE constraints is binding – i.e. νb(y
′, x′(y′)) +
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νl(y
′, x′(y′)) > 0. In other words, I{(y′,x′(y′))} = 1 indicates when the subprogram

resets. Then within the subprogram

FV (y, x, x̄) = min
{ϱ}

max
{c,e}

{
x̄u(c)− x

[
v̂(e) + ϱv′(e)

]
+ (y − c)

+
1

1 + r
E

[
I{(y′,x′(y′))}F̂ V (y′, x′(y′)) + (1− I{(y′,x′(y′))})FV (y′, x′(y′), x̄′) | y, e

]}
s.t. x′(y′) = ηx

[
1 + φ(y′|y)

]
,

x̄′ = ηx̄.

As it can be seen, within the subprogram x′(y′) is the latent multiplier which cumulates

past incentives. The consumption policy is given by the same first-order condition, (10),

resulting in c(x, s), while the optimal effort e(x, s) requires a reformulation of (18).

For this, it is useful to recall that, as in the benchmark Fund contracts, F̂ V (y, x) =

xV̂ b(y, x) + V l(y, x). However, FV (y, x, x) depends on x and x; therefore, we first

decompose

V
b
1(x, s) = u(c(x, s)) + βE

[
V

b
1(y

′, x′(y′))
]
,

V
b
2(y, x) = −v̂(e(x, s)) + βE

[
V

b
2(y

′, x′(y′))
]
,

then the value of the borrower is simply V
b
(y, x, x) = V

b
1(x, s)+V

b
2(y, x) implying that

FV
b
(y, x, x) = xV

b
1(x, s) + xV

b
2(y, x) + V

l
(y, x, x).

Note that, except for the distinction between x and x, FV (y, x, x) is the same as

F̂ V (y, x) since we can always incorporate in the minimization {νb, νl} which will satisfy

νb = νl = 0, by construction, within the subprogram. This allows us to express a unique

first-order condition for the effort policy.

The presence of subprograms enhances risk sharing compared to the canonical MH.

The reason behind this is that, within a subprogram, there is perfect consumption

smoothing adjusted for the relative impatience of the borrower. As one can see from

the law of motion of x̄ together with (10), consumption is entirely deterministic and

decays at rate η as long as the subprogram runs. Conversely, when the subprogram

resets, consumption is adjusted up if the latent multiplier x is larger than x. In other

words, consumption increases if the borrower accumulated enough good realizations of

y′ in the past. The opposite is true when x < xmeaning that the borrower accumulated

too few good realizations of y′ in the past. However, the end of the subprogram is

endogenously determined by the binding LE constraints and the punishment-reward

mechanism must satisfy the borrower’s constraint; that is, it cannot punish when the

borrower’s LE constraint is binding. This design makes the Fund contract closer to the

design under flexible MH.
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It is important to note that the back-loaded structure mirrors the existing frame-

work of sovereign lending programs implemented by international multilateral lenders,

such as the IMF. These lenders offer relatively short-term lending programs. These

programs are often followed by subsequent arrangements, each contingent on a new

risk assessment that takes into account the borrowing country’s previous performance.

This iterative process ensures that the lending is aligned with the evolving economic

conditions and reform progress of the recipient country, thereby aiming to enhance the

effectiveness and sustainability of the financial support provided.

5.2 Restricted flexible moral hazard

Besides the back-loading of incentives, there is another way to bridge the gap between

the flexible and the canonical MH. In Section 3, the borrower can choose any distribu-

tion of π while incurring a cost v(π) which is a mapping from M to the real. We relax

the assumption on the distribution choice and consider that the borrower’s choice is

restricted to a subset of Q ⊂ M. As in Section 4, the borrower can choose among

a family of distribution Q(e) = ϖ(e)QL + (1 − ϖ(e))QH by exerting effort e ∈ [0, 1]

which leads to a cost v(Q(e)).

Following our argument in Section 3, we can formulate the IC constraint as the

outcome of the following maximization problem

Q = argmax
Q̃

{
−v(Q̃) + β

∫
V b(y′)Q̃(dy′)

}
.

Given the restriction on the choice of distribution, this maximization problem can be

reformulated as a maximization over the level of effort e. More precisely, one can write

e(y) = argmax
ẽ

{
−v(Q(ẽ)) + β

∫
V b(y′)Q(ẽ)(dy′)

}
=argmax

ẽ

{∫ [
βV b(y′)− vQ(e)(y

′)
]
Q(y′|y, ẽ)(dy′)

}
,

where the second equality comes from the Gateau differentiability in Assumption 1.

The IC constraint is therefore∫ [
βV b(y′)− vQ(e)(y

′)
]
∂eQ(y′|y, e(y))(dy′) = 0. (19)

As one can see the expression is similar to the IC constraint (14). In particular, given

the presence of ∂eQ(y′|y, e(y)), the provision of incentives relies on the informativeness

of the realization of y′. This differs from the flexible MH studied in Section 3. The

reason is that the borrower does not enjoy local flexibility. In other words, any change
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in e has a global effect on the target distribution enabling the Fund to measure the

relative likelihood of a specific realization. We therefore conclude that what distinguish

the flexible MH and the canonical MH is both the structure of the the cost of effort

and the relative flexibility towards which the borrower can allocate likelihood.

Given this, the Fund contract in recursive form reads as follows

FV (y, x) = SP min
{νb,νl,ϱ}

max
{c,e}

{
x
[
(1 + νb)U(c,Q(e))− νbV

D(y)
]

+
[
(1 + νl)[y − c]− νlZ(y)

]
+

∫ [
1 + νl
1 + r

FV (y′, x′(y′))− xφ(y′|y)vQ(e)(y
′)

]
Q(y′|y, e)(dy′)

}
s.t. x′(y′) =

[
1 + νb
1 + νl

+
φ(y′|y)
1 + νl

]
ηx and φ(y′|y) = ϱ

∂eQ(y′|y, e)
Q(y′|y, e)

.

6 Quantitative Analysis

We first calibrate the Fund’s outside option for the Euro Area stressed countries. We

then compare the outcome of the different Fund contracts in terms of business cycles

properties and welfare.

6.1 The Quantitative Fund

For the quantitative model, we expand the Fund contract in several dimensions. We

expose the effect of these changes in the Fund under flexible MH. The other Fund

contracts are derived in the Appendix. First, the borrower can produce goods using a

decreasing-returns labour technology y = θf(n), where f ′(n) > 0, f ′′(n) < 0, n ∈ [0, 1]

denotes labor and θ is a productivity shock. The shock is composed of two parts

θ ≡ ζ + ς(ζ)g,

where ς(ζ) denotes the standard error of θ conditional on ζ. The shock ζ follows a

Markov process with compact support P ⊆ R+ and transition function πζ(ζ ′|ζ). For the
shock g, the government can generate any distribution with compact support K ⊆ R+.

We denote by π the distribution of g′ conditional on ζ ′ and πg = {ζ ′ ∈ P : π ∈ M} the

vector of all such conditional distributions. While the two shocks ζ ′ and g′ are directly

contractible, the vector of conditional distributions πg is not. We denote the state at

the beginning of a period to be s ≡ {ζ, g}.
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Second, we assume a more realistic outside option which corresponds to the autarky

value in a Incomplete Market economy with Defaultable (IMD) debt,10

V D(s) =max
n,πg

{
U(θdf(n), n,πg) (20)

+ β

∫ ∫ [
(1− λ)V D(s′) + λJ(s′, 0)

]
π(dg′)πζ(ζ ′|ζ)(dζ ′)

}
,

where θd ≤ θ contains the penalty for defaulting and λ ≥ 0 is the probability to

re-access the private bond market. Furthermore, J(·) corresponds to the value of

reintegrating the private bond market without the Fund. More precisely, J(s, b) =

maxD∈{0,1}{(1−D)V P (s, b) +DV D(s)}, with

V P (s, b) = max
{c,n,πg ,b′}

{
U(c, n,πg) + β

∫ ∫ [
J(s′, b′)

]
π(dg′)πζ(ζ ′|ζ)(dζ ′)

}
(21)

s.t. c+ q(s, b′)(b′ − δb) ≤ θf(n) + (1− δ + δκ)b.

In the private bond market, the government can borrow long-term defaultable bonds,

b′, at a unit price of qp(s, b
′). A fraction 1 − δ of each bond matures today and the

remaining fraction δ is rolled-over and pays a coupon κ. Private lenders are competitive

and the price of one unit of private bond is given by q(s, b′) = 1
1+r

∫ ∫
(1−D(s′, b′))[1−

δ+ δκ+ δq(s′, b′′)]π(dg′)πζ(ζ ′|ζ)(dζ ′) where D(·) is the default policy taking value one

in case of default and zero otherwise.

In this extended environment, the Fund’s contract in sequential form is given by

max
{c(st),n(st),πg

t+1}
E0

[
αb,0

∞∑
t=0

βtU(c(st), n(st),πg
t+1) + αl,0

∞∑
t=0

(
1

1 + r

)t [
θtf(n(s

t))− c(st)
] ]

s.t. Et

[ ∞∑
j=t

βj−tU(c(sj), n(sj),πg
j+1)

]
≥ V D(st)

Et

[ ∞∑
j=t

(
1

1 + r

)j−t (
θjf(n(s

j))− c(sj)
) ]

≥ Z(st)

vπt+1(ζt+1)(g
t+1) = β

(
V b(st+1)− V b({ζt+1, y})

)
.

As one can see the different constraints are easily adapted to the extensions we consider.

10See Aguiar et al. (2009), Arellano (2008), Chatterjee and Eyigungor (2012) and Aguiar and Amador

(2021).
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The Fund’s contract in recursive form is then

FV (x, s) = SP min
{νb,νl,ϱ}

max
{c,n,πg}

{
x
[
(1 + νb)U(c, n,πζ)− νbV

D(s)
]

(22)

+
[
(1 + νl)[θf(n)− c]− νlZ(s)

]
+

∫ ∫ [
1 + νl
1 + r

FV (x′(s′), s′)− xϱ(s′)
(
vπg(ζ′)(g

′) + V b
0 (x

′({ζ ′, y}), ζ ′)
)]
πg(ζ ′)(dg′)πζ(ζ ′|ζ)(dζ ′)

}
s.t. x′(s′) ≡ x′(s) + x̂′(s′) =

[
1 + νb
1 + νl

+
ϱ(s′)

1 + νl

]
ηx, (23)

where ϱ ≡ {ζ ′ ∈ P, g′ ∈ K : ϱ({ζ ′, g′})} corresponds to the vector of multipliers

attached to the IC constraints.

6.2 Calibration

Following Ábrahám et al. (2025), we calibrate the IMD economy for the Euro Area

stressed countries during the euro crisis (i.e. Portugal, Italy, Greece and Spain) between

1980 and 2019. The model period is assumed to be one year. Table 1 lists all the

parameters in the model. The Appendix contains more information about the data.

The utility of the borrower is additively separable in consumption, leisure and effort.

In particular, we assume that u(c) = c1−σc−1
1−σc

and h(1 − n) = γ (1−n)1−σl−1
1−σl

. For the

canonical MH, we consider v(e) = ω1e
2, for the flexible MH v(π) = ω2

2 [
∫
(g− y)π(dg)]2

and for the restricted flexible MH v(π) = ω3
2 [

∫
(g−y)π(dg)]2 so that the second deriva-

tive is linear in all cases. While the value of σc follows the standard in the literature, we

choose γ and σl to match the average and relative volatility of n. We explain how the

parameters (ω1, ω2, ω3) are determined when we expose the labor productivity shock

estimation.

The parameters of the long term bond (δ, κ) are set to match the average maturity

and the average coupon rate (coupon payment to debt ratio) of debt, respectively.

After a default, the borrower faces exclusion for a random number of periods. The

probability of market re-access is the one of Chatterjee and Eyigungor (2012). If a

borrower defaults, it is also subject to an asymmetric default penalty θd = min{θ,O(θ)}
where O(θ) = (1− ψ)θ+ ψ(θ+ θ).11 The parameter ψ is chosen to match the average

spread in the data. The discount factor to β is set to match the average debt ratio.

The risk free interest rate r is equal to the average short-term real interest rate of

Germany after the introduction of the euro from 2000 to 2019.

11We adopt a different cost than Arellano (2008) who assumes O(θ) = O = ψEθ. The reason is that the

specification of Arellano (2008) does not guarantee that the strict inequality in Assumption ?? holds under

flexible MH.
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Table 1: Parameters

Parameter Value Description Targeted Moment

A. Literature

σc 1 Risk aversion

Z 0 Fund mutualization

B. Data

r 0.0198 Risk-free rate Average German real short-term rate

δ 0.814 Bond maturity Average bond maturity

κ 0.076 Bond coupon rate Average bond coupon rate

a 0.5696 Labor share Average labor share

λ 0.1538 Market re-access probability Average exclusion

C. Model

β 0.9375 Discount factor Average b/y

σl 0.17 Labor elasticity Average n

γ 1.49 Leisure utility weight Relative volatility n

ω1 0.17 Effort disutility weight Eϖ(e) = 0.5

ω2 9.7 Effort disutility weight Average disutility of effort

ω3 31.3 Effort disutility weight Average disutility of effort

ψ 0.163 Output default cost Average spread

ϵ 0.0001 Utility shock variance Convergence

Following Ábrahám et al. (2025), Liu et al. (2020) and Callegari et al. (2023), the

participation constraint of the Fund is set to Z = 0, implying no expected permanent

transfers between the borrower and the Fund at any time or state. In other words,

the Fund is not build on an assumption of solidarity which would require permanent

transfers.

Regarding the production technology, we assume that f(n) = na with the labor

share a equating the average labor share across the Euro Area stressed countries. We

verify that the Fund’s value is concave ex post. The log of labor productivity, log θ,

is assumed to be a Markov regime switching (MRS) AR(1) process. We fit the labor

productivity log(θi,t) of the four countries to the following panel MRS AR(1) model

log(θi,t) = (1− ρ(ζi,t))m(ζi,t) + ρ(ζi,t) log(θi,t−1) + ς(ζi,t)ϵi,t, (24)

where ζi,t ∈ {1, . . . , R} denotes the regime of country i at time t, ρ(ζi,t), m(ζi,t),

ς(ζi,t) are the regime-specific autocorrelation, mean and standard error of the process,

respectively, and ϵi,t follows an i.i.d. standard normal distribution. Given this, we
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Table 2: Labor Productivity Process

m(ζ) ρ(ζ) ς(ζ) πζ(ζ ′|ζ) ζ ′ = 1 ζ ′ = 2

ζ = 1 6.62 0.93 0.06 ζ = 1 0.91 0.09

ζ = 2 6.68 0.82 0.17 ζ = 2 0.12 0.88

Note: The variable ζ ∈ {1, 2} denotes the regime, πζ(ζ′|ζ) corresponds to the

regime transition matrix, ρ(ζ) is the regime-specific autocorrelation, m(ζ) is

the regime-specific mean and ς(ζ) is the regime-specific standard error of the

process.

can write θi,t = ζi,t + ς(ζi,t)gi,t. The country specific regime ζi,t is independent in the

cross-section, and follows a Markov chain over time, with an R × R regime transition

matrix πζ . Since our model does not have any capital accumulation, we use the time

series for the labor productivity θi,t for the four Euro Area stressed countries. The

estimated parameters of the MRS are displayed in Table 2 with R = 2. We further

discretize the shock process using the method of Liu (2017) with 20 grid points for each

regime leading to a total of 40 labor productivity states θ. We then split θ between ζ

and g by setting y = 0 given the estimated standard error ς(ζ).

The above estimation enables us to retrieve Q. Recall that Q = ϖ(e)QL + (1 −
ϖ(e))QH for QL, QH ∈ Q. Effort affects the probability distribution over next period’s

realisation of y′. KnowingQ, we createQH using a modified version of the mass transfer

algorithm in Østerdal (2010).12 We then retrieve QL = (Q− (1−ϖ(e))QH)/ϖ(e). To

facilite to computation of QH and QL, we set ϖ(e) = 0.5 and choose ω1 accordingly.

Regarding the exact functional form, we set ϖ(e) = (e − 1)2 which implies simple

expressions for ∂Q(g′|g,e)
∂e and ∂2Q(g′|g,e)

∂e2
as follows:

∂Q(g′|g, e)
∂e

= −ϖ′(e)
[
QL(g

′|g)−QH(g′|g)
]
= 2(1− e)

[
QL(g

′|g)−QH(g′|g)
]

∂2Q(g′|g, e)
∂e2

= −ϖ′′(e)
[
QL(g

′|g)−QH(g′|g)
]
= −2

[
QL(g

′|g)−QH(g′|g)
]
.

Under this functional forms Assumption 3 is satisfied. We finally select (ω2, ω3) such

that the borrower incurs ex post the same average disutility of effort in all IMD

economies.

12More precisely, we split Q into R2 sub-transition matrices for each regime, say Qi,j for i, j ∈ {1, . . . , R}.
For each Qi,j , we generate QH,i,j by shifting the probability mass from below the main diagonal of Qi,j to

above the main diagonal. This makes high values of θ more likely to happen. We then put all QH,i,j back

together which gives us QH . The transfer of probability mass for each sub-matrix is the maximal transfer

such that (Q− (1−ϖ(e))QH)/ϖ(e) = QL is a well-defined transition matrix.
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As noted by Chatterjee and Eyigungor (2012), the computation of the IMD economy

with long-term debt requires some form of randomization. Building on the most recent

literature, we introduce a utility shock to the default choice which follows a Type 1

Extreme Value (i.e. Gumbel) distribution with a scale parameter ϵ.13 We do not

give any structural meaning to this shock. It is a pure randomization device aimed

for convergence and accordingly we pick the smallest possible value of ϵ leading to

convergence.

6.3 Outcome and comparison

Table 3 depicts the outcome of the calibration. We first discuss the IMD and the Fund

economies separately before comparing them.

Regarding the IMD economies, the IMD under canonical and restricted flexible

MH are very similar. They both offer predictions that are very close to the data.

In opposition, the IMD under flexible MH is very different. The default rate is zero

and the depicted relative volatilities are below the other two IMD economies. More

importantly, the debt ratio is almost 4 times higher than the targeted one. Plus, the

primary surplus is perfectly counter-cyclical, while it is pro-cyclical in the data. It

therefore seems that the IMD economy under flexible MH is very much at odd with

the data unlike the other two IMD economies.

Regarding the Fund economies, a similar argument applies. While the Fund under

canonical, restricted flexible and back-loaded MH are very close from each other, the

Fund under flexible MH generates very different moments. In particular, the Fund

under flexible MH records a large primary surplus and high working hours with a very

low relative volatility of consumption, while the other two Fund contracts generate

lower primary surpluses and working hours on average and more volatile consumption

relative to output. Consumption, labor and the primary surplus are highly pro-cyclical

in all Fund contracts but only perfectly so under flexible MH.

Comparing the IMD and the Fund economies, there are substantial differences.

Under the canonical and the restricted flexible MH, the Fund reduces the volatility

of consumption, labor and primary surplus. These variables also correlate more with

output in the Fund. Regarding the flexible MH, the primary surplus and labor are

perfectly pro-cyclical in the Fund and perfectly counter-cyclical in the IMD economy.

Moreover, the Fund almost annihilates the relative volatility of consumption, while the

IMD economy generates a relative volatility close to 1.

13See Mihalache (2020), Dvorkin et al. (2021), Mateos-Planas et al. (2022) and Mateos-Planas et al. (2023).
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Table 3: Results

Variables Targeted Data IMD Economy Fund Economy

CMH FMH RMH CMH FMH RMH BMH

A. First moments

b′/y (%) × 85.70 82.33 330.70 96.56 - - - -

n (%) × 36.09 36.11 38.24 36.26 37.53 40.45 38.03 36.56

e - 0.29 - 1.00 0.19 - 0.99 0.18

(y − c)/y (%) -0.76 1.38 7.89 1.64 0.74 2.51 0.97 0.42

Spread (%) × 2.20 2.26 0.00 1.88 - - - -

B. Second moments

std(c)/std(y) 1.00 1.31 1.09 1.29 0.54 0.06 0.35 0.31

std(n)/std(y) × 0.99 0.97 0.08 1.05 0.51 0.84 0.73 0.77

std((y − c)/y)/std(y) 1.03 1.11 0.08 1.20 0.06 0.18 0.09 0.09

std(spread) 1.20 0.92 0.00 0.67 - - - -

corr(c, y) 0.79 0.61 1.00 0.52 0.91 1.00 0.71 0.62

corr(n, y) 0.66 0.19 -1.00 0.28 0.92 1.00 0.95 0.96

corr((y − c)/y, y) 0.17 0.18 -1.00 0.27 0.91 1.00 0.96 0.95

corr(spread, y) -0.18 -0.35 0.00 -0.28 - - - -

Note: CMH stands for Canonical Moral Hazard, BMH for Back-Loaded Moral Hazard, RMH for Restricted Flexible

Moral Hazard and FMH for Flexible Moral Hazard. See the Appendix contains more information about the data.

6.4 Steady state analysis

This subsection focuses on the Fund’s allocation in steady state. We first study the

main policy functions before simulating the different economies and analyzing welfare.

Figures 1 and 2 depict the main policy functions as a function of the relative Pareto

weight x. The red lines relate to the highest value of θ (i.e. s = {ζ, g}) and the blue

lines to the lowest value of θ (i.e. s = {ζ, y}). The dotted lines relate to the highest

value of y′ (i.e. g) and the solid lines to the lowest value of y′ (i.e. y). The two

figures also represent the ergodic set of the relative Pareto weights for the different

Fund contracts in gray. The ergodic set gives the steady state of the Fund contract in

which we conduct simulations.

In each specification, the horizontal line on the left hand side is determined by the
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Note: The figure depicts the main policy functions as a function of the relative Pareto weight x. The red lines relate to the

highest value of θ and the blue lines to the lowest value of θ. The dotted lines relate to the highest value of y′ and the solid

lines to the lowest value of y′. The gray region corresponds to the ergodic set.

Figure 1: Fund policies under Canonical, Back-Loaded and Restricted Flexible MH

borrower’s binding LE constraint, while the horizontal line on the right hand side is

determined by the Fund’s binding LE constraint. The line rejoining both horizontal

lines is determined by the allocation when none of the LE constraints binds.

Looking at Figure 1, we observe little differences between the Funds under canonical,

back-loaded and restricted flexible MH. The only exception is that the borrower always

sets e = 1 in the restricted flexible MH, while the effort is interior in the other two MH

regimes.14 This is because ∂Q(g′|g,e)
∂e = 0 when e = 1 leading to the IC constraint (19)

to hold. This also implies that the dotted and solid lines are aligned for x′. Note also

14In the back-loaded MH, effort is close to but not exactly zero outside the ergodic set for high values of

θ.
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Note: The figure depicts the main policy functions as a function of the relative Pareto weight x. The

red lines relate to the highest value of θ and the blue lines to the lowest value of θ. The dotted

lines relate to the highest value of y′ and the solid lines to the lowest value of y′. The gray region

corresponds to the ergodic set.

Figure 2: Fund policies under Flexible MH

that there are some non-monotonicity in the level of effort in the back-loaded MH. As

noted by Ábrahám et al. (2025) this is due to the Fund’s binding LE constraint.

Looking at Figure 2, the borrower chooses a relatively high y′ when the the Fund’s

LE constraint does not bind. However, it sets y′ = 0 in most states in which this

constraint binds. The reason is that the spread in the borrower’s and the Fund’s value

between the different choices of y′ is too narrow to sustain high values of y′. This

however happens outside of the steady state.

Contrasting Figures 1 and 2, we find some differences in the law of motion of the

relative Pareto weights between the flexible MH and the other regimes. Moreover, the

ergodic set in the Fund with flexible MH is associated with a range of relative Paeto

weights which is higher than the ergodic set of the Fund under other MH regimes. As

a result, borrower in the Fund under flexible MH enjoys a higher value than in the

other Fund contracts as one will see later.

To better compare the different IMD and Fund economies, Figures 3 and 4 depict a

simulation path under the same sequence of ζ in steady state. Except for the economies

under flexible MH, we also consider the same sequence of g for illustrative purposes.
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Note: The figure depicts a simulated path of debt and effort in steady state in the different

IMD economies.

Figure 3: Simulation – IMD economies

In general, because the different economies exert varying levels of effort, the sequence

of g differs.

Figure 3 depicts a simulated path of debt and effort in steady state in the different

IMD economies. The gray dotted lines represent the occurrence of defaults. We ob-

serve that the different IMD economies have distinct dynamics of indebtedness. Under

flexible MH, the borrower can sustain a large amount of debt without ever default-

ing. Under restricted flexible MH, the economy accumulates more debt than under

canonical MH. This however translates into a higher frequency of default in the period

considered. Regarding effort, the borrower fixes e = 1 under restricted flexible MH

as noted previously. Under canonical MH, effort is always strictly less than 1. Under

flexible MH, the chosen level of g perfectly tracks the path of ζ.

Figure 4 depicts a simulated path like Figure 3 but for the different Fund economies.

In terms of relative Pareto weights, the Fund under back-loaded MH provides an in-

teresting case. When looking at the latent Pareto weight x′ (yolid yellow line), the

depicted path follows the one of the relative Pareto weight under canonical MH. How-

ever, the main relative Pareto weight x̄′ (dotted orange line) follows very closely the

relative Pareto weight in the restricted flexible MH. This is because with e = 1 and the

functional form of ϖ(e), φ(y′|y) = 0 in the restricted flexible MH. In opposition, the
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Note: The figure depicts a simulated path of debt and effort in steady state in the different

Fund economies.

Figure 4: Simulation – Fund economies

path of the relative Pareto weight under flexible MH remains flat. In terms of effort,

we have e = 1 under restricted flexible MH, while, under flexible MH, the chosen level

of g tracks the path of ζ similar to the IMD economies.

We end this section with a welfare analysis in steady state. Welfare gains are

computed for the borrower as a percent of consumption-equivalent changes. Denoting

the value of the borrower in the benchmark case by V b(θ) and in the alternative case by

V̈ b(θ), the gains are given by (exp
[
(V̈ b(θ)−V b(θ))(1−β)

]
−1)×100 under the assumed

functional form of the utility function. For the lenders, we simply compute V̈ l(θ)−V l(θ)

as a proxy of welfare gains. Table 4 depicts the welfare gains and is made of two parts.

The upper part of the table presents the gains for the different IMD economies with

respect to the IMD economy under canonical MH (i.e. the benchmark case) for the

different MH regimes, whereas the lower part compares the different Fund contracts

with respect to the Fund contract under canonical MH (i.e. the benchmark case).

When comparing the different IMD economies, we observe welfare gains for the bor-

rower. The IMD economy with flexible MH Pareto dominates all the other alternatives

for the borrower. We also note that the borrower is better off in the IMD economy

under restricted flexible than under canonical MH. The wedge in the values of the

lenders is however negligible in all cases.
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Table 4: Welfare Gains

IMD vs. CMH IMD

State Borrower Lenders/Fund

FMH RMH FMH RMH

θ 78.17 7.07 0.00 0.00

θ 34.04 3.70 0.00 0.00

Fund vs. CMH Fund

State Borrower Fund

FMH RMH BMH FMH RMH BMH

θ 82.09 9.69 1.12 0.97 0.07 -0.12

θ 29.65 6.15 3.67 0.67 0.11 -0.19

Note: CMH stands for Canonical Moral Hazard, BMH for Back-Loaded Moral Hazard,

RMH for Restricted Flexible Moral Hazard and FMH for Flexible Moral Hazard. The

borrower’s welfare gains for a specific θ correspond to (exp
[
(V̈ b(θ)−V b(θ))(1−β)

]
−1)×

100 where V̈ b and V b are the values of the borrower in the benchmark and the alternative

case, respectively. For the lenders, welfare gains are simply given by V̈ l(θ)− V l(θ).

Regarding the comparison across Fund contracts, we see that the Fund under flex-

ible and restricted flexible MH Pareto dominate the Fund contract under canonical

MH. Under the flexible MH, the Fund almost completely eliminates the volatility of

consumption. Under the restricted flexible MH, consumption is also less volatile than

under the canonical MH and effort is larger. Under the back-loaded MH, the outcome

is different. While the borrower is better off than in the canonical MH, the Fund is

worse off. This should not come as a surprise as the borrower benefits from a better

consumption smoothing mechanism which comes at the cost of the Fund.

To complement the computation of welfare gains in steady state, Figure 5 depicts

the Pareto frontier of the different Fund contracts. Such frontiers span the entire state

space and are not restricted to the ergodic set. We see that the Fund contract under

canonical MH is Pareto dominated by all the other contracts except for the Fund under

the back-loaded MH. The most efficient contract is the one under flexible MH followed

by the one under restricted flexible MH as the welfare gains already highlighted.
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Note: The figure depicts the Pareto frontier of the different Fund contract.

The panel on the left is for θ and the panel on the right is for θ.

Figure 5: Pareto Frontiers

7 Conclusion

From the perspective of economic theory, since the pioneer work of Prescott and

Townsend (1984), it is understood that under appropriate convexity assumptions moral

hazard (and adverse selection) problems can be incorporated as problems of efficiently

assigning resources subject to technological and feasibility constraints, by introducing

Incentive Compatibility (IC) constraints in parallel to other constraints. Furthermore,

it is also understood that under these, and other standard assumptions, the corre-

sponding competitive equilibrium exists and the First and Second Welfare Theorems

are satisfied for constrained-efficient allocations. Extensive follow up work has ex-

tended these results to dynamic economies – e.g. with debt or other financial assets,

etc. However, all this work has built on – what we call – the canonical framework,

and not much work has been done in studying different forms of implementation. In

fact, from the applied perspective – say, of official lenders – IC design has had almost

no impact and the focus has been on the design of verifiable conditions, signaling the

improvement of a risk profile.

In this paper, we have widen the scope of dynamic IC design by: extending the flex-

ible moral hazard approach to dynamic contracts, in particular to recursive contracts

with limited enforcement constraints; confronting it with the canonical approach, and

bringing them closer with the restricted flexible and back-loaded designs. The latter be-

ing close to the official lending programs, which often become a sequence of short-term
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programs, which, as we show, can be a way to implement ICs.

Our quantitative results open a new venue for the design of official lending programs,

since in assessing the risk-profile of a country the first question that arises is: what

is its capacity to choose a better risk distribution? and how costly would that be?

Then, design the ICs accordingly. While, as we find, unconstrained flexible MH is

counterfactual in the context of sovereign debt, forms of constrained flexible moral

hazard are likely to be factual and, therefore, its ICs implementable. In fact, conditional

reforms to prevent pandemics or natural disasters are choices of distributions.
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Ábrahám, Á., E. Carceles-Poveda, Y. Liu, and R. Marimon (2025): “On the Optimal

Design of a Financial Stability Fund,” The Review of Economic Studies, Forthcoming.

Aguiar, M. and M. Amador (2021): The Economics of Sovereign Debt and Default, Prince-

ton University Press.

Aguiar, M., M. Amador, and G. Gopinath (2009): “Investment Cycles and SovereignDebt

Overhang,” Review of Economic Studies, 76, 1–31.

Arellano, C. (2008): “Default Risk and Income Fluctuations in Emerging Economies,”

American Economic Review, 98, 690–712.

Atkeson, A. (1991): “International Lending with Moral Hazard and Risk of Repudiation,”

Econometrica, 59, 1069–1089.

Atkeson, A. and R. E. Lucas (1992): “On Efficient Distribution with Private Information,”

The Review of Economic Studies, 59, 427–453.

Bocola, L., G. Bornstein, and A. Dovis (2019): “Quantitative Sovereign Default Models

and the European Debt Crisis,” Journal of International Economics, 118, 20–30.

Callegari, G., R. Marimon, A. Wicht, and L. Zavalloni (2023): “On a Lender of

Last Resort with a Central Bank and a Stability Fund,” Review of Economic Dynamics, 50,

106–130.

Chatterjee, S. and B. Eyigungor (2012): “Maturity, Indebtedness, and Default Risk,”

American Economic Review, 102, 2674–2699.

Dovis, A. and R. Kirpalani (2023): “On the Design of a Robust Lender of Last Resort,”

Unpublished Manuscript.

Dvorkin, M., J. Sánchez, H. Sapriza, and E. Yurdagul (2021): “Sovereign Debt Re-

structurings,” American Economic Journal: Macroeconomics, 13, 26–77.

Ferrari, A., Y. Liu, R. Marimon, and C. Simpson-Bell (2024): “Fiscal and Currency

Union with Default and Exit,” .

Georgiadis, G., D. Ravid, and B. Szentes (2024): “Flexible Moral Hazard Problems,”

Econometrica, 92, 387–409.

Hamilton, J. D. (1990): “Analysis of Time Series Subject to Changes in Regime,” Journal

38



of Econometrics, 45, 39–70.

Holmstrom, B. (1979): “Moral Hazard and Observability,” The Bell Journal of Economics.

Kehoe, P. and F. Perri (2002): “International Business Cycles with Endogenous Incomplete

Markets,” Econometrica, 70, 907–928.

Kehoe, T. and D. K. Levine (2001): “Liquidity Constrained Markets versus Debt Con-

strained Markets,” Econometrica, 69, 575–598.

Kehoe, T. J. and D. K. Levine (1993): “Debt-Constrained Asset Markets,” Review of

Economic Studies, 60, 865–888.

Liu, Y. (2017): “Discretization of the Markov Regime Switching AR(1) Process,” Wuhan

University.

Liu, Y., R. Marimon, and A. Wicht (2020): “Making Sovereign Debt Safe with a Financial

Stability Fund,” .

Marcet, A. and R. Marimon (2019): “Recursive Contracts,” Econometrica, 87, 1589–1631.

Mateos-Planas, X., S. McCrary, J.-V. Rios-Rull, and A. Wicht (2022): “The Gen-

eralized Euler Equation and the Bankruptcy-Sovereign Default Problem,” .

——— (2023): “Commitment in the Canonical Sovereign Default Model,” University of Penn-

sylvania.

Mele, A. (2011): “Repeated moral hazard and recursive Lagrangeans,” Working Paper.

Mihalache, G. (2020): “Sovereign Default Resolution through Maturity Extension,” Journal

of International Economics, 125, 103–126.

Müller, A., K. Storesletten, and F. Zilibotti (2019): “Sovereign Debt and Structural

Reforms,” American Economic Review, 109, 4220–4259.

Østerdal, L. P. (2010): “The mass transfer approach to multivariate discrete first order

stochastic dominance: Direct proof and implications,” Journal of Mathematical Economics,

46, 1222–1228.

Prescott, E. C. and R. M. Townsend (1984): “Pareto Optima and Competitive Equilibria

with Adverse Selection and Moral Hazard,” Econometrica, 52, 21–46.

Quadrini, V. (2004): “Investment and Liquidation in Renegotiation-Proof Contracts with

Moral Hazard,” Journal of Monetary Economics, 51, 713–751.

Roch, F. and H. Uhlig (2018): “The Dynamics of Sovereign Debt Crises and Bailouts,”

Journal of International Economics, 114, 1–13.

Rogerson, W. P. (1985): “The First-Order Approach to Principal-Agent Problems,” Econo-

metrica, 53, 1357–1367.

Simpson-Bell, C. (2020): “Risk Sharing and Policy Convergence in Economic Unions,” PhD

thesis, European University Institute.

Thomas, J. and T. Worrall (1994): “Foreign Direct Investment and the Risk of Expropri-

ation,” Review of Economic Studies, 61, 81–108.

Tirole, J. (2015): “Country Solidarity in Sovereign Crises,” American Economic Review, 105,

2333–2363.

39



Online Appendix (Not For Publication)

A Proofs

A.1 Preliminary lemmas

We first prove a few preliminary lemmas before proving the propositions and lemmas

located in the main text. We start with the characteristics of the borrower’s and the

Fund’s value.

Lemma A.1. Under Assumption 1, in the Fund contract under flexible MH:

1. When none of the LE constraints binds, x′(y, x, y′) and c(y, x) are strictly increas-

ing in x and π(y, x) is strictly increasing in first-order stochastic dominance in

x, V b(y, x) is strictly increasing and strictly concave in x and V l(y, x) is strictly

decreasing and concave in x.

2. When one of the LE constraints binds, x′(y, x, y′), c(y, x), π(y, x), V b(y, x) and

V l(y, x) are all constant in x.

3. V b(x′(y, x, y′), y′) is strictly increasing and strictly concave in y′ and V l(x′(y, x, y′), y′)

is strictoly increasing and concave in y′.

Proof. For the flexible MH, recall that

FV (y, x) = xV b(y, x) + V l(y, x) with

V l(y, x) = y +
1

1 + r

∫ [
V l(y′, x′(y′))

]
π(y′)(dy′),

V b(y, x) = U(c, π) + β

∫ [
V b(y′, x′(y′))

]
π(y′)(dy′).

We first show that

∂xFV (y, x) = V b(y, x) + x∂xV
b(y, x) + ∂xV

l(y, x) = V b(y, x),

which implies the efficient risk-sharing property: x∂xV
b(y, x) = −∂xV l(y, x). This

comes from the envelope condition stating that ∂xFV = V b(y, x). At the same time,

the decomposition in FV leads to ∂xFV (y, x) = V b(y, x) + x∂xV
b(y, x) + ∂xV

l(y, x).

Combining these two equations delivers the desired result.

We second show that x′(y, s, y′) and c(y, x) are strictly increasing in x and y′(y, x)

is decreasing in x when none of the LE constraints binds. For x′(y′), the statement

directly follows from the law of motion of the relative Pareto weight in (23). For
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consumption, the statement follows from the first-order conditions (10). For π(y, x),

the statement follows from (4) and V b(y, x) being increasing in x as we show next.

We third show the properties of V b(y, x) and V l(y, x) when none of the LE con-

straints binds. By definition, when x increases the Fund gives more weight to the

borrower. As a result, V b(y, x) is strictly monotone in x. Then, using our first result,

∂xV
l(y, x) < 0 so that V l(y, x) is strictly decreasing in x. We show concavity in x

below together with y.

We fourth show that all policies and value functions are constant when none of the

LE constraints binds. This follows from the fact that the policies, value functions and

multipliers are evaluated when the constraints are binding as solutions to the saddle-

point problem.

We fifth show that x′(y′), V b(y′, x′(y′)) and V l(y′, x′(y′)) increasing in y′. For x′(y′),

the statement directly follows from the fact that ϱ(y′) ≥ ϱ(ỹ′) ≥ 0 for y′ ≥ ỹ′ and with

strict inequality when y′ > ỹ′ as shown in Lemma 1. Regarding the value function,

we have seen that FV (y, x) is increasing in x. Given x, a higher y means a higher

surplus and therefore a higher FV (y, x) and, through risk-sharing, a higher V b(y, x)

and V l(y, x).

Finally to show concavity of V l(y, x) and strict concavity of V b(y, x) in (y, x), define

the operators

T V l(y, x) = y − c(y, x) +
1

1 + r

∫
V l(y′, x′(x, y, y′))π(y, x)(dy′),

QV b(y, x) = U(c(y, x), π(y, x)) + β

∫
V b(y′, x′(x, y, y′))π(y, x)(dy′).

Consider ỹ, ÿ ∈ Y and define yα = αỹ + (1− α)ȳ with α ∈ (0, 1). Since the constraint

set is convex, we can define cα(x) = αc(ỹ, x) + (1− α)c(ȳ, x), πα(x) = απ(ỹ, x) + (1−
α)π(ȳ, x) and x′α(x, y

′) = αx′(ỹ, x, y′)+(1−α)x′(ȳ, x, y′). Assuming that V l is concave,

it then holds that

T V l(yα, x) ≥yα − cα(x) +
1

1 + r

∫
V l(y′, x′α(x, y

′))πα(x)(dy
′)

≥α
[
ỹ − c(ỹ, x) +

1

1 + r

∫
V l(y′, x′(x, ỹ, y′))π(ỹ, x)(dy′)

]
+ (1− α)

[
ÿ − c(ÿ, x) +

1

1 + r

∫
V l(y′, x′(x, ÿ, y′))π(ÿ, x)(dy′)

]
= αT V l(ỹ, x) + (1− α)T V l(ÿ, x),

where the first inequality comes from optimality, the second from the assumption of

concavity and third from the definition of the operator T . Hence, V l is concave in y.

The same argument can be extended to xα = αx̃+ (1− α)x̄ to show concavity in x
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For the operator Q, one can repeat the same argument with yα = αỹ + (1 − α)ȳ

and xα = αx̃+(1−α)x̄, respectively. The only exception is that the second inequality

is strict given the strict concavity of the instantaneous utility function. Hence, V b is

strictly concave in (y, x).

Ábrahám et al. (2025, Lemmas 1-3) provide a proof of the same lemma in the case of

canonical MH. The extension to the case of restricted flexible MH is straightforward.

For the back-loaded MH, we need to distinguish between the main and the latent

relative Pareto weight. Other than that, the same type of argument ought to apply.

We can now show that the the saddle-point Lagrangian is also concave in π under the

assumption that the second and the third Gateau derivatives of v(·) are non negative.

Lemma A.2. The Lagrangian of the saddle-point Bellman equation L(y, x) is concave
in π.

Proof. First observe that the first Gateau derivative of the saddle-point Lagrangian is

given by Λπ(y
′). Hence, the second Gateau derivative of the saddle-point Lagrangian

is

−x
(
1 + νb + 2ϱ(y′)

)
wπ(i, y

′)− xϱ(y′)

∫
zπ(i, j, y

′)π(di),

where zπ(i, j, y
′) denotes the third Gateau derivative of v(·). By Assumption 2, ϱ(y′) ≥

0. Moreover, the second and the third derivatives are non negative implying concavity

of the saddle-point Lagrangian.

A.2 Proof of Proposition 2

Recall that

Λπ(y
′) ≡x

(
1 + νb + ϱ(y′)

) [
β
(
V b(y′, x′(y′))− V b(y, x′(y))

)
− vπ(y′)(y

′)
]

+
1 + νl
1 + r

[
V l(y′, x′(y′))− V l(y, x′(y))

]
− xϱ(y′)

∫
wπ(i, y

′)π(di).

Given (4), the expression simplifies to

Λπ(y
′) ≡1 + νl

1 + r

[
V l(y′, x′(y′))− V l(y, x′(y))

]
− xϱ(y′)

∫
wπ(i, y

′)π(di).

As shown in Lemma A.1, the Fund’s value is concave in y. This together with the

assumption that the second Gateau derivative wπ(i, y
′) is strictly convex makes Λπ(y

′)

strictly concave. We can therefore apply Corollary 3 in Georgiadis et al. (2024) stating

that the distribution has at most one y′ in its support. As a result, we can reformulate

(22) as a problem of choosing y′ directly instead of π.
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A.3 Proof of Proposition 1

To show existence we use the argument in the proof of Theorem 3 of Marcet and

Marimon (2019) and the proof of Proposition 1 of Ábrahám et al. (2025).

Marcet and Marimon (2019) make the following necessary assumptions: A1 a well

defined Markov chain process for y, A2 continuity in {c, π} and measurability in y,

A3 non-empty feasible sets, A4 uniform boundedness, A5 convex technologies, A6

concavity for the lenders and strict concavity for the borrower, and a strict interiority

condition. Assumption A1, A2, A5 and A6 are trivially met given Assumption 1. Since

feasible c and π are bounded, payoffs functions are bounded as well. Since ϕ(·) ≥ 0

and ϕ′(·) ∈ [0, 1], V D(y) is montone in y which ensures that A4 is met. Whether A3 is

satisfied depends on the initial condition (y0, x0(y0)). Assumption 2 ensures feasibility

and that the strict interiority condition is satisfied.

Similar to Ábrahám et al. (2025), we consider a relaxed contracting problem which

is the same as the original contracting problem except that (4) is replaced by a weak

inequality version. More precisely,

β
(
V b(yt+1)− V b(y)

)
− vπt+1(y

t+1) ≥ 0. (A.1)

Taking the Gateau derivative of this expression leads to

−wπt+1(y
t+1, i) ≤ 0,

where the inequality follows from Assumption 1 stating that the second derivative is

non negative. As a result, (A.1) defines a convex set of feasible distribution choices.
ItshouldbenotedthatTheorem3inMarcetandMarimon (2019)istherecursive, saddle−
point, representationcorrespondingtotheoriginalcontractproblem(22).T oobtaintherecursiveformulationofthecontract, wehavenormalizedtheco−
statevariable.Wereliedonthethehomogeneityofdegreeonein(µb, µl) to redefine the con-

tracting problem using x – i.e. effectively (x, 1) – as a co-state variable. Given this and

the fact that multipliers are uniformly bounded, the theorem applies. That is, if we

define the set of of feasible Lagrange multipliers by L = {(µb, µl) ∈ R2
+} and the set of

feasible allocations by A = {c ∈ R+, π ∈ M}, the correspondence SP : A×L→ A×L

mapping non-empty, convex, and compact sets to themselves, is non-empty, convex-

valued, and upper hemicontinuous. I can therefore apply Kakutani’s fixed point theo-

rem and existence immediately follows.

Given this, we need to show that the relaxed contracting problem has the same solu-

tion as the original contracting problem. For this it suffices to show that ϱ(y, x, y′) > 0.
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Assume by contradiction that ϱ(y, x, y′) = 0, then Λπ(y
′) = 0, implies that

0 =x (1 + νb)
[
β
(
V b(y′, x′(y′))− V b(y, x′(y))

)
− vπ(y

′)
]

+
1 + νl
1 + r

[
V l(y′, x′(y′))− V l(y, x′(y))

]
.

Given the monotonicity of V l, the second line is (weakly) positive meaning that the

first line needs to be (weakly) negative. This contradicts (A.1).

Finally, as FV is monotone in x, constant when either of the LE constraints are

binding and concave when both are slack, we can directly use the argument of Marcet

and Marimon (2019) who show that the saddle point functional equation (22) is a

contraction mapping. The strict concavity/convexity assumptions on u,f and v imply

that the allocation is unique.

A.4 Proof of Lemma 1

From (11), when y′ = y, V l(y′, x′(y′)) = V l(y, x′(y)) meaning that the first-order

condition is satisfied only if ϱπ(y
′) = 0. In opposition, when y > y, V l(y′, x′(y′)) >

V l(y, x′(y)) from Lemma A.1 meaning that the first-order condition is satisfied only if

ϱπ(y
′) > 0.

A.5 Proof of Corollary 1

When η = 1 and νl(y) = 0 in all states, the law of motion of the relative Pareto weight

simplifies to the following expression

Ex′(y′) ≡ E
[
x̄′(y) + x̂′(y′)

]
= E

[
(1 + νb(y))x(y) + ϱπ(y

′|y)x(y)
]
.

Since (νb(y), ϱπ(y
′)) ≥ 0, we get that Ex′(y′) ≥ x(y).

A.6 Proof of Lemma 2

Regarding the first part of the lemma, note that, given (16),∫
Q(y′|y, e(y))x̂′(y)(dy′) = 0,

since independently of effort
∫
Q(y′|y, e(y))(dy′) = 1, hence

∫
∂eQ(y′|y, e(y))(dy′) = 0.

Therefore Ex̂′ = 0 and Ex′ = x̄′(y). Alternatively, the expected law of motion of x

can also be expressed as

Ex′ = E

[
1

u′(c′)

1 + νl(y
′)

1 + νb(y′)

]
=

1

u′(c)
η,
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where the last equality is the inverse Euler equation of the recursive contract (Ábrahám

et al. (2025), Lemma 4).

Regarding the second part of the lemma, note that, since the limited enforcement

multipliers are either zero or at most one of the two is positive, we can have the

following decomposition

E
1

u′(c′)
= E

[
x′
1 + νb(y

′)

1 + νl(y′)

]
= Ex′ +Ex′νb(y)−Ex′

νl(y)

1 + νl(y)
,

where Ex′ = ηx and, without incentive constraints, the last two terms simply denote

the change in the relative Pareto weight when either the no-default or the sustainability

constraints binds. However, if LE constraints satisfy the ‘no-free-lunch condition’, the

no-default constraint is more likely to bind, while the sustainabiliy constraint is less

likely to bind and, as a result, in both cases expected consumption increases.

B Quantitative Fund Contracts

In this section, we derive the quantitative version of the Fund contracts under canonical,

back-loaded and restricted flexible MH.

B.1 Canonical moral hazard

We assume independence between ζ ′ and g′. This implies that a single shock variable,

g′, depends on effort. We denote the joint distribution of ζ ′ and g′ by Υ(s′|s, e). Given

this, the Fund contract under canonical MH in recursive form is given by

F̂ V (x, s) = SP min
{νb,νl,ϱ}

max
{c,n,e}

{
x
[
(1 + νb)Û(c, n, e)− νbV̂

D(s)− ϱv̂e(e)
]

+
[
(1 + νl)(θf(n)− c)− νlZ(s)

]
+

1 + νl
1 + r

∫ ∫
F̂ V (x′, s′)Υ(s′|s, e)(dg′)(dζ ′)

}
s.t. x′(s′) ≡ x̄′(s) + x̂′(s′) =

[
1 + νb

1 + νl
+
φ(s′|s)
1 + νl

]
ηx,

φ(s′|s) = ϱ
∂eΥ(s′|s, e)
Υ(s′|s, e)

.
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The effort policy e(x, s) is determined by the first order condition of the SPFE with

respect to e,

v̂′(e(x, s)) = β

∫ ∫
∂eΥ(s′|s, e)V̂ b(x′(s′), s′)(dg′)(dζ ′)

+
1 + νl(x, s)

1 + νb(x, s)

1

x

1

1 + r

∫ ∫
∂eΥ(s′|s, e)V̂ l(x′(s′), s′)(dg′)(dζ ′)

− ϱ(x, s)

1 + νb(x, s)

[
v′′(e(x, s))− β

∫ ∫
∂2eΥ(s′|s, e)V̂ b(x′(s′), s′)(dg′)(dζ ′)

]
.

Since the IC constraint is given by

v̂e(e(s)) = β

∫ ∫
V̂ b(s′)∂eΥ(s′|s, e(s))(dg′)(dζ ′),

the first-order condition simplifies to

1

1 + r

∫ ∫
∂eΥ(s′|s, e)V̂ l(x′(s′), s′)(dg′)(dζ ′)

= ϑ(x, s)

[
v′′(e(x, s))− β

∫ ∫
∂2eΥ(s′|s, e)V̂ b(x′(s′), s′)(dg′)(dζ ′)

]
,

where ϑ(x, s) ≡ xϱ(x,s)
1+νl(x,s)

.

B.2 Back-loaded moral hazard

The Fund contract can be expressed as the solution to a sequence of sub-contracts. As

a subprogram resets when one of the LE constraint binds, the start of a subprogram

is such that

F̂ V (x, s) = min
{νb,νl,ϱ}

max
{c,n,e}

{
x
[
(1 + νb)(u(c) + h(1− n)− v̂(e))− νbV̂

D(s)− ϱv′(e)
]

+ [(1 + νl)(θf(n)− c)− νlZ(s)]

+
1 + νl
1 + r

E

[
I{(x′(s′),s′)}F̂ V (x′(s′), s′) + (1− I{(x′(s′),s′)})FV (x′(s′), s′, x̄′) | s, e

]}
s.t. x′(s′) = ηx

1 + νb + φ(s′|s)
1 + νl

,

x̄′ = ηx
1 + νb
1 + νl

,

Then within the subprogram

FV (x, s, x̄) = min
{ϱ}

max
{c,n,e}

{
x̄ [u(c) + h(1− n)]− x

[
v̂(e) + ϱv′(e)

]
+ (θf(n)− c)

+
1

1 + r
E

[
I{(x′(s′),s′)}F̂ V (x′(s′), s′) + (1− I{(x′(s′),s′)})FV (x′(s′), s′, x̄′) | s, e

]}
s.t. x′(s′) = ηx

[
1 + φ(s′|s)

]
,

x̄′ = ηx̄.
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We decompose the value as

V
b
1(x, s) = u(c(x, s)) + h(1− n(x, s)) + βEV b

1(x
′(s′), s′),

V
b
2(x, s) = −v̂(e(x, s)) + βEV b

2(x
′(s′), s′),

then the value of the borrower is simply V
b
(x, s, x) = V

b
1(x, s)+V

b
2(x, s) implying that

FV
b
(x, s, x) = xV

b
1(x, s) + xV

b
2(x, s) + V

l
(x, s, x).

Given this, the unique first-order condition for the effort policy is

v̂′(e) = β

∫ ∫
∂eΥ(s′|s, e)

[
W b(x′(s′), s′, x̄′)

]
(dg′)(dζ ′)

+
1 + νl
1 + νb

1

x

1

1 + r

∫ ∫
∂eΥ(s′|s, e)

[
W l(x′(s′), s′, x̄′)

]
(dg′)(dζ ′)

− ϱ(x, s)

1 + νb

[
β

∫ ∫
∂2eΥ(s′|s, e)

[
I{(x′(s′),s′)}V

b
2(x

′(s′), s′) + (1− I{(x′(s′),s′)})V̂
b(x′(s′), s′)

]
(dg′)(dζ ′)

+ v̂′′(e(x, s))

]
.

whereW b(x′(s′), s′, x̄′) = I{(x′(s′),s′)}V̂
b(x′(s′), s′)+(1−I{(x′(s′),s′)})V

b
(x′(s′), s′, x̄′) and

W l(x′(s′), s′, x̄′) = I{(x′(s′),s′)}V̂
l(x′(s′), s′) + (1− I{(x′(s′),s′x̄′)})V

l
(x′(s′), s′, x̄′). As be-

fore this expression can be decomposed into the IC constraint

v̂′(e(x, s)) = β

∫ ∫
∂eΥ(s′|s, e)

[
W b(x′(s′), s′, x̄′)

]
(dg′)(dζ ′),

which determines e(x, s), and

1

1 + r

∫ ∫
∂eΥ(s′|s, e)

[
W l(x′(s′), s′, x̄′)

]
(dg′)(dζ ′)

= ϑ(x, s)

[
β

∫ ∫
∂2eΥ(s′|s, e)

[
I{(x′(s′),s′)}V

b
2(x

′(s′), s′) + (1− I{(x′(s′),s′)})V̂
b(x′(s′), s′)

]
(dg′)(dζ ′)

+ v̂′′(e(x, s))

]
,

which determines ϑ(x, s) ≡ xϱ(x,s)
1+νl

defined as in Section 4.
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B.3 Restricted flexible moral hazard

The Fund contract in recursive form reads as follows

FV (x, s) = SP min
{νb,νl,ϱ}

max
{c,n,e}

{
x
[
(1 + νb)U(c, n,Q(e))− νbV

D(s)
]

+
[
(1 + νl)[θf(n)− c]− νlZ(s)

]
+

∫ ∫ [
1 + νl
1 + r

FV (x′(s′), s′)− xφ(s′|s)
vQ(e)(g

′)

πζ(ζ ′|ζ)

]
Υ(s′|s, e)(dg′)(dζ ′)

}
s.t. x′(s′) =

[
1 + νb
1 + νl

+
φ(s′|s)
1 + νl

]
ηx and φ(s′|s) = ϱ

∂eΥ(s′|s, e)
Υ(s′|s, e)

.

Taking the first-order conditions with respect to effort, we obtain the following condi-

tion

0 =

∫ ∫
∂eΥ(s′|s, e)

[
βV b(x′(s′), s′)−

vQ(e)(g
′)

πζ(ζ ′|ζ)

]
(dg′)(dζ ′)

+
1 + νl(x, s)

1 + νb(x, s)

1

x

1

1 + r

∫ ∫
∂eΥ(s′|s, e)V l(x′(s′), s′)(dg′)(dζ ′)

− ϱ(x, s)

1 + νb(x, s)

[∫ ∫ {
∂eΥ(s′|s, e)

∫
wQ(e)(z, g

′)

π(ζ ′|ζ)
Q(e)(dz)

− ∂2eΥ(s′|s, e)
[
βV b(x′(s′), s′)−

vQ(e)(g
′)

πζ(ζ ′|ζ)

]}
(dg′)(dζ ′)

]
.

The first line is the IC constraint given by∫ ∫ [
βV b(s′)−

vQ(e)(g
′)

πζ(ζ ′|ζ)

]
∂eΥ(s′|s, e(s))(dg′)(dζ ′) = 0.

As a result, the above expression becomes

1

1 + r

∫ ∫
∂eΥ(s′|s, e)V l(x′(s′), s′)(dg′)(dζ ′)

= ϑ(x, s)

[∫ ∫ {
∂eΥ(s′|s, e)

∫
wQ(e)(z, g

′)

π(ζ ′|ζ)
Q(e)(dz)

− ∂2eΥ(s′|s, e)
[
βV b(x′(s′), s′)−

vQ(e)(g
′)

πζ(ζ ′|ζ)

]}
(dg′)(dζ ′)

]
.

where ϑ(x, s) ≡ xϱ(x,s)
1+νl(x,s)

as before.

C Data

C.1 Data Sources

Table C.1 reports the source of data used for the calibration of the model. We follow

the same methodology as Ábrahám et al. (2025).
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Table C.1: Data Sources and Definitions

Series Times Sources Unit

Output 1980–2019 AMECO (OVGD)a 1 billion 2015 constant euro

Consumption 1980–2019 AMECO (OCNT)b 1 billion 2015 constant euro

Working hours 1980–2019 AMECO (NLHT,NLHA)c 1 million hours

Employment 1980–2019 AMECO (NETD) 1000 persons

Government debt 1980–2019 AMECO (EDP) end-of-year percentage of GDP

Debt service 1980–2019 AMECO (UYIGE)d end-of-year percentage of GDP

Primary surplus 1980–2019 AMECO (UBLGIE)e end-of-year percentage of GDP

Bond yields 1980–2019 AMECO (ILN,ISN,ISRV)f percentage

Debt maturity 1980–2019 OECD, EuroStat, ESMg years

Labor share 1980–2019 AMECOh percentage

a Strings in parentheses indicate AMECO labels of data series.
b PWT 8.1 values for Greece in 1980–1982.
c Total and average working hours.
d AMECO for 1995–2019; European Commission General Government Data (GDD 2002) for 1980–1995.
e AMECO linked series for 1995–2019; European Commission General Government Data (GDD 2002) for

1980–1995.
f Nominal long-term yield, nominal and real short-term yield. A few missing values for Greece and Portugal

replaced by Eurostat long-term government bond yields.
g Average across different data sources, identical to Ábrahám et al. (2025).
h Compensation of employees (UWCD) plus gross operating surplus (UOGD) minus gross operating surplus

adjusted for imputed compensation of self-employed (UQGD), then divided by nominal GDP (UVGD).

Labor Input. For the aggregate labor input ni,t, we use two series from AMECO, the

aggregate working hours Hi,t and the total employment Ei,t of each country over the

period 1980-2019. We calculate the normalized labor input as ni,t = Hi,t/(Ei,t×5200),

assuming 100 hours of allocatable time per worker per week. However, for most of the

data moment computations, we use Hi,t directly.

Consumption. We fit the observed fiscal behavior across the selected countries, so

that we use directly the data measures of household and government consumption and

government primary surplus to calibrate the model.

Government. We use the general government consolidated gross debt. As noted by

Bocola et al. (2019), matching the overall public debt allows a quantitative sovereign

default model to better fit crisis dynamics. Regarding the risk-free rate, we take the

average real short-term yield of Germany after the introduction of the euro from 2000 to

10



2019. Similarly, the interest rate spread corresponds to the difference with the nominal

long-term yield of Germany between 2000 and 2019. We compute the coupon rate as

the ratio of debt service over debt. Finally, as noted by Ábrahám et al. (2025), the

information on the maturity structure of the government debt is not comprehensive

for the country considered. The overall time coverage is unequal across countries:

1998–2015 for Greece, 1991–2015 for Spain, 1990–2015 for Italy, and 1995–2015 for

Portugal.

C.2 Productivity Shock Estimation

We follow Ábrahám et al. (2025) and estimate the labor productivity shock using a

panel Markov regime switching AR(1) based on the expectation maximization approach

of Hamilton (1990).

Figure C.1: Smoothed probability for each regime

Figure C.1 shows the smoothed probability for each regime across the countries

included in the estimation. We consider 2 regimes: the one depicted with a circle

line corresponds to a regime of low labor productivity and the one depicted with a

triangle line corresponds to a regime of high labor productivity. Periods of low labor

productivity are centered around the global financial crisis and the European debt
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crisis.

We discretize the regime switching AR(1) process with 20 grid points for each regime

using the method detailed in Liu (2017).
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